Maize, a cornerstone of global food security, has undergone remarkable transformations through breeding, yet it faces mounting challenges in a changing world. In this review, we trace the historical successes of maize breeding which laid the foundation for present opportunities. We examine both the specific and shared breeding goals related to diverse geographies and end-use demands.
View Article and Find Full Text PDFTo investigate the value of prognostic nutrition index (PNI) and systemic immunoinflammatory index (SII) for predicting pathological responses of patients with advanced gastric cancer (GC) after neo-adjuvant chemotherapy (NACT). The clinicopathological data of 326 patients with advanced GC who received NACT in Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City) from January 2017 to December 2021 were retrospectively collected. The SII and PNI of patients were calculated.
View Article and Find Full Text PDFThe application of oncolytic peptides has become a powerful approach to induce complete and long-lasting remission in multiple types of carcinomas, as affirmed by the appearance of tumor-associated antigens and adenosine triphosphate (ATP) in large quantities, which jumpstarts the cancer-immunity cycle. However, the ATP breakdown product adenosine is a significant contributor to forming the immunosuppressive tumor microenvironment, which substantially weakens peptide-driven oncolytic immunotherapy. In this study, a lipid-coated micelle (CA@TLM) loaded with a stapled oncolytic peptide (PalAno) and an adenosine 2A receptor (A2AR) inhibitor (CPI-444) is devised to enact tumor-targeted oncolytic immunotherapy and to overcome adenosine-mediated immune suppression simultaneously.
View Article and Find Full Text PDFObjective: To explore the therapeutic effect of multiple small diameter drilling combined with extracorporeal shock wave therapy (ESWT) under C-arm X-raylocalization in patients with early osteonecrosis of the femoral head (ONFH).
Methods: A total of 106 cases of early ONFH patients admitted from May 2015 to May 2017 were retrospectively selected as the study subjects. According to different treatment methods, the patients were divided into observation group and control group, 53 cases in each group.
The dense stroma of desmoplastic tumor limits nanotherapeutic penetration and hampers the antitumor immune response. Here, we report a denaturation-and-penetration strategy and the use of tin monosulfide nanoparticles (SnSNPs) as nano-sonosensitizers that can overcome the stromal barrier for the management of desmoplastic triple-negative breast cancer (TNBC). SnSNPs possess a narrow bandgap (1.
View Article and Find Full Text PDFTumor-associated macrophages (TAMs) play a critical role in the immunosuppressive solid tumor microenvironment (TME), yet in situ engineering of TAMs for enhanced tumor immunotherapy remains a significant challenge in translational immuno-oncology. Here, we report an innovative nanodrug-delivering-drug (STNSP@ELE) strategy that leverages two-dimensional (2D) stanene-based nanosheets (STNSP) and β-Elemene (ELE), a small-molecule anticancer drug, to overcome TAM-mediated immunosuppression and improve chemo-immunotherapy. Our results demonstrate that both STNSP and ELE are capable of polarizing the tumor-supportive M2-like TAMs into a tumor-suppressive M1-like phenotype, which acts with the ELE chemotherapeutic to boost antitumor responses.
View Article and Find Full Text PDFPROteolysis TArgeting Chimeras (PROTACs) are an emerging class of promising therapeutic modalities that selectively degrade intracellular proteins of interest by hijacking the ubiquitin-proteasome system. However, the lack of techniques to efficiently transport these degraders to targeted cells and consequently the potential toxicity of PROTACs limit their clinical applications. Here, a strategy of nanoengineered PROTACs, that is, Nano-PROTACs, is reported, which improves the bioavailability of PROTACs and maximizes their capacity to therapeutically degrade intracellular oncogenic proteins for tumor therapy.
View Article and Find Full Text PDFSurgical resection remains a mainstay in the treatment of malignant solid tumors. However, the use of neoadjuvant treatments, including chemotherapy, radiotherapy, phototherapy, and immunotherapy, either alone or in combination, as a preoperative intervention regimen, have attracted increasing attention in the last decade. Early randomized, controlled trials in some tumor settings have not shown a significant difference between the survival rates in long-term neoadjuvant therapy and adjuvant therapy.
View Article and Find Full Text PDFAdv Drug Deliv Rev
December 2022
Despite its prevalence in the management of peripheral tumors, compared to surgery and radiation therapy, chemotherapy is still a suboptimal intervention in fighting against brain cancer and cancer brain metastases. This discrepancy is mainly derived from the complicatedly physiological characteristic of intracranial tumors, including the presence of blood-brain barrier (BBB) and limited enhanced permeability and retention (EPR) effect attributed to blood-brain tumor barrier (BBTB), which largely lead to insufficient therapeutics penetrating to tumor lesions to produce pharmacological effects. Therefore, dependable methodologies that can boost the efficacy of chemotherapy for brain tumors are urgently needed.
View Article and Find Full Text PDFThe objective of this study was to evaluate the fertilization capability of White Bengal Tiger frozen-thawed completely immotile spermatozoa after interspecific intracytoplasmic sperm injection (ICSI) with bovine oocytes. The fertilization status of presumptive zygotes was assessed 18 h after ICSI by immunofluorescence staining and confocal microscopy. The fertilization rate was 34.
View Article and Find Full Text PDFEarly-stage brain metastasis of breast cancer (BMBC), due to the existence of an intact blood-brain barrier (BBB), is one of the deadliest neurologic complications. To improve the efficacy of chemotherapy for BMBC, a Trojan horse strategy-based nanocarrier has been developed by integrating the cell membrane of a brain-homing cancer cell and a polymeric drug depot. With the camouflage of a MDA-MB-231/Br cell membrane, doxorubicin-loaded poly (D, L-lactic-co-glycolic acid) nanoparticle (DOX-PLGA@CM) shows enhanced cellular uptake and boosted killing potency for MDA-MB-231/Br cells.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2022
CoP is one of the most promising catalysts for catalyzing hydrogen evolution reaction. The foremost issue is how to improve intrinsic activity by regulating electronic structure at the molecular level. Herein, utilizing selective combination of EDTA and Co, an amorphous-crystalline CoP with lower valence cobalt and hollow porous structure which induced by dual ligand environment is successfully synthesized via microwave heating and following phosphating process.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2021
Unlabelled: Small-sized trastuzumab-targeted micelles (T-MP) were engineered using a surfactant-stripping approach that yielded concentrated phthalocyanines with strong near infrared absorption. T-MP accumulated more in the lymph node (LN) metastases of orthotopic colorectal cancer compared to the micelles conjugated with control IgG. Following surgical resection of the primary tumor, minimally invasive photothermal treatment of the metastatic LN with T-MP, but not the control micelles, extended mouse survival.
View Article and Find Full Text PDFPhotodynamic therapy (PDT) of cancer is limited by tumor hypoxia. Platinum nanoparticles (nano-Pt) as a catalase-like nanoenzyme can enhance PDT through catalytic oxygen supply. However, the cytotoxic activity of nano-Pt is not comprehensively considered in the existing methods to exert their multifunctional antitumor effects.
View Article and Find Full Text PDF