Publications by authors named "Hahnemann J"

Background: Transient neonatal diabetes mellitus 1 (TNDM1) is a rare imprinting disorder characterized by intrautering growth retardation and diabetes mellitus usually presenting within the first six weeks of life and resolves by the age of 18 months. However, patients have an increased risk of developing diabetes mellitus type 2 later in life. Transient neonatal diabetes mellitus 1 is caused by overexpression of the maternally imprinted genes PLAGL1 and HYMAI on chromosome 6q24.

View Article and Find Full Text PDF

Objective: Transient neonatal diabetes mellitus 1 (TNDM1) is the most common cause of diabetes presenting at birth. Approximately 5% of the cases are due to recessive ZFP57 mutations, causing hypomethylation at the TNDM locus and other imprinted loci (HIL). This has consequences for patient care because it has impact on the phenotype and recurrence risk for families.

View Article and Find Full Text PDF

Beckwith-Wiedemann syndrome (BWS) is an overgrowth syndrome, which, in 50-60% of sporadic cases, is caused by hypomethylation of KCNQ1OT1 differentially methylated region (DMR) at chromosome 11p15.5. The underlying defect of this hypomethylation is largely unknown.

View Article and Find Full Text PDF

Silver-Russell syndrome (SRS) is characterised by prenatal and postnatal growth retardation, dysmorphic facial features, and body asymmetry. In 35-60% of SRS cases the paternally methylated imprinting control region (ICR) upstream of the H19 gene (H19-ICR) is hypomethylated, leading to downregulation of IGF2 and bi-allelic expression of H19. H19 and IGF2 are reciprocally imprinted genes on chromosome 11p15.

View Article and Find Full Text PDF

The combination of megalencephaly, perisylvian polymicrogyria, polydactyly and hydrocephalus (MPPH) is a rare syndrome of unknown cause. We observed two first cousins affected by an MPPH-like phenotype with a submicroscopic chromosome 5q35 deletion as a result of an unbalanced der(5)t(5;20)(q35.2;q13.

View Article and Find Full Text PDF

We have previously described individuals presenting with transient neonatal diabetes and showing a variable pattern of DNA hypomethylation at imprinted loci throughout the genome. We now report mutations in ZFP57, which encodes a zinc-finger transcription factor expressed in early development, in seven pedigrees with a shared pattern of mosaic hypomethylation and a conserved range of clinical features. This is the first description of a heritable global imprinting disorder that is compatible with life.

View Article and Find Full Text PDF

Introduction: First trimester screening for Down's syndrome was evaluated by the National Board of Health in 2004, and recommended to all pregnant women in the form of an informed choice. We have reviewed prenatal and postnatal chromosome aberrations in 3 counties in Denmark during the years of implementation in 2004, 2005 and 2006.

Materials And Methods: Risk evaluation based on combined screening (fetal nuchal translucency measurement and serum screening of the pregnant woman) was introduced in the counties of Copenhagen, Roskilde and Storstrom, covering approximately 1.

View Article and Find Full Text PDF

We present the first clinical report of sibs with the multiple maternal hypomethylation syndrome. Both sisters presented with transient neonatal diabetes mellitus (TNDM). By methylation-specific PCR of bisulphite-treated DNA, we found a mosaic spectrum of hypomethylation at the following maternally methylated loci in both sibs: ZAC (6q24), KCNQ1OT1 (11p15.

View Article and Find Full Text PDF

Thiamine-responsive megaloblastic anaemia (TRMA) is a rare autosomal recessive condition, characterized by megaloblastic anaemia, non-autoimmune diabetes mellitus, and sensorineural hearing loss. We describe three infants with TRMA from two consanguineous Pakistani families, who were not known to be related but originated from the same area in Pakistan. All children were homozygous, and the parents were heterozygous for a c.

View Article and Find Full Text PDF

We performed a molecular study with 21 microsatellites on a sample of 82 trisomy 13 conceptuses, the largest number of cases studied to date. The parental origin was determined in every case and in 89% the extra chromosome 13 was of maternal origin with an almost equal number of maternal MI and MII errors. The latter finding is unique among human autosomal trisomies, where maternal MI (trisomies 15, 16, 21, 22) or MII (trisomy 18) errors dominate.

View Article and Find Full Text PDF

Genetic epidemiology focuses on the familial and, in particular, genetic, determinants of disease and the joint effects of genes and environmental factors. Thus, genetic epidemiology aims at quantifying the risk of disease, cancer included, associated with genetic variation within a given population. In spite of the fact that most cases of cancer are initiated based on environmental exposures accumulated during a life-time, the carcinogenetic process itself is governed by a set of specified and unspecified genetic malfunctions, making genetic epidemiology a valuable methodological platform in cancer research.

View Article and Find Full Text PDF

The expression of imprinted genes is mediated by allele-specific epigenetic modification of genomic DNA and chromatin, including parent of origin-specific DNA methylation. Dysregulation of these genes causes a range of disorders affecting pre- and post-natal growth and neurological function. We investigated a cohort of 12 patients with transient neonatal diabetes whose disease was caused by loss of maternal methylation at the TNDM locus.

View Article and Find Full Text PDF

Transient neonatal diabetes mellitus (TNDM) is characterised by intra-uterine growth retardation, while Beckwith-Wiedemann syndrome (BWS) is a clinically heterogeneous overgrowth syndrome. Both TNDM and BWS may be caused by aberrant loss of methylation (LOM) at imprinted loci on chromosomes 6q24 and 11p15.5 respectively.

View Article and Find Full Text PDF

We report on a liveborn infant with trisomy 10 mosaicism combined with maternal uniparental heterodisomy for chromosome 10. The mosaicism 47,XY,+10/46,XY was found in five different tissues, including one blood sample, while cultured lymphocytes from two other blood samples showed a normal karyotype, 46,XY. DNA analysis with six PCR-based microsatellite markers demonstrated the trisomic cell line to be a result of maternal meiotic nondisjunction, and revealed maternal uniparental heterodisomy in the diploid cell line, suggesting that the formation of the diploid cell line was due to trisomy rescue.

View Article and Find Full Text PDF

Epidemiological studies have consistently shown elevated rates of breast cancer among female blood relatives of patients with ataxia telangiectasia (AT), a rare autosomal recessive disease. A large proportion of the members of AT families are carriers of AT-causing gene mutations in ATM (Ataxia Telangiectasia Mutated), and it has been hypothesised that these otherwise healthy carriers are predisposed to breast cancer. This is an extended and enlarged follow-up study of cancer incidence in blood relatives of 75 patients with verified AT in 66 Nordic families.

View Article and Find Full Text PDF

Background: Cryptic chromosome imbalances are increasingly acknowledged as a cause for mental retardation and learning disability. New phenotypes associated with specific rearrangements are also being recognized. Techniques for screening for subtelomeric rearrangements are commercially available, allowing the implementation in a diagnostic service laboratory.

View Article and Find Full Text PDF

Unlabelled: We report on a girl with an unusual Beckwith-Wiedemann syndrome (BWS) and hemihypertrophy, who developed an adrenocortical carcinoma with atypical clinical behaviour. At 4 y of age the girls was admitted to hospital with cushingoid features, virilization, increased excretion of steroids and low serum ACTH. A right-sided adrenocortical carcinoma was removed.

View Article and Find Full Text PDF

Background: Epidemiologic studies of the families of patients with ataxia-telangiectasia (A-T), a recessive genetic neurologic disorder caused by mutation of the ATM gene, suggest that heterozygous carriers of an ATM mutation are at increased risk of cancer. A population-based study of cancer incidence in A-T families with unbiased selection and tracing of relatives would confirm this hypothesis.

Methods: We conducted a study in the Nordic countries of 1218 blood relatives of 56 A-T patients from 50 families.

View Article and Find Full Text PDF

The Ataxia Telangiectasia Mutation (ATM) gene is mutated in the rare recessive syndrome Ataxia Telangiectasia (AT), which is characterized by cerebellar degeneration, immunodeficiency, and cancer predisposition. In this study, 41 AT families from Denmark, Finland, Norway, and Sweden were screened for ATM mutations. The protein truncation test (PTT), fragment length and heteroduplex analyses of large (0.

View Article and Find Full Text PDF

Causes of chromosomal nondisjunction is one of the remaining unanswered questions in human genetics. In order to increase our understanding of the mechanisms underlying nondisjunction we have performed a molecular study on trisomy 8 and trisomy 8 mosaicism. We report the results on analyses of 26 probands (and parents) using 19 microsatellite DNA markers mapping along the length of chromosome 8.

View Article and Find Full Text PDF