This paper presents a self-organizing hierarchical cerebellar model arithmetic computer (HCMAC) neural-network classifier, which contains a self-organizing input space module and an HCMAC neural network. The conventional CMAC can be viewed as a basis function network (BFN) with supervised learning, and performs well in terms of its fast learning speed and local generalization capability for approximating nonlinear functions. However, the conventional CMAC has an enormous memory requirement for resolving high-dimensional classification problems, and its performance heavily depends on the approach of input space quantization.
View Article and Find Full Text PDFA number of methods for predicting levels of solvent accessibility or accessible surface area (ASA) of amino acid residues in proteins have been developed. These methods either predict regularly spaced states of relative solvent accessibility or an analogue real value indicating relative solvent accessibility. While discrete states of exposure can be easily obtained by post prediction assignment of thresholds to the predicted or computed real values of ASA, the reverse, that is, obtaining a real value from quantized states of predicted ASA, is not straightforward as a two-state prediction in such cases would give a large real valued errors.
View Article and Find Full Text PDFA multiple linear regression method was applied to predict real values of solvent accessibility from the sequence and evolutionary information. This method allowed us to obtain coefficients of regression and correlation between the occurrence of an amino-acid residue at a specific target and its sequence neighbor positions on the one hand, and the solvent accessibility of that residue on the other. Our linear regression model based on sequence information and evolutionary models was found to predict residue accessibility with 18.
View Article and Find Full Text PDFThis paper presents a neural network classifier that learns disjunctive fuzzy information in the feature space. This neural network consists of two types of nodes in the hidden layer. The prototype nodes and exemplar nodes represent cluster centroids and exceptions in the feature space, respectively.
View Article and Find Full Text PDF