Publications by authors named "Hagmeyer B"

HepaChip microplate (HepaChip-MP) is a microfluidic platform comprised of 24 independent culture chambers with continuous, unidirectional perfusion. In the HepaChip-MP, an automated dielectrophoresis process selectively assembles viable cells into elongated micro tissues. Freshly isolated primary human hepatocytes (PHH) and primary human liver endothelial cells (HuLEC) were successfully assembled as cocultures aiming to mimic the liver sinusoid.

View Article and Find Full Text PDF

Aptamers are promising cell targeting ligands for several applications such as for the diagnosis, therapy, and drug delivery. Especially, in the field of regenerative medicine, stem cell specific aptamers have an enormous potential. Using the combinatorial chemistry process SELEX (Systematic Evolution of Ligands by Exponential enrichment), aptamers are selected from a huge oligonucleotide library consisting of approximately 10(15) different oligonucleotides.

View Article and Find Full Text PDF

Robust bubble-free priming of complex microfluidic chips represents a critical, yet often unmet prerequisite to enable their practical and widespread application. Towards this end, the usage of a network of capillary stop valves as a generic design feature is proposed. Design principles, numerical simulations, and their application in the development of a microfluidic cell culture device are presented.

View Article and Find Full Text PDF

This research is part of a program aiming at the development of a fluidic microsystem for in vitro drug testing. For this purpose, primary cells need to be assembled to form cellular aggregates in such a way as to resemble the basic functional units of organs. By providing for in vivo-like cellular contacts, proper extracellular matrix interaction and medium perfusion it is expected that cells will retain their phenotype over prolonged periods of time.

View Article and Find Full Text PDF

In order to study possible toxic side effects of potential drug compounds in vitro a reliable test system is needed. Predicting liver toxicity presents a major challenge of particular importance as liver cells grown in a cell culture suffer from a rapid loss of their liver specific functions. Therefore we are developing a new microfluidic test system for liver toxicity.

View Article and Find Full Text PDF

Chemical stimulation of cells is inherently cell type selective in contrast to electro-stimulation. The availability of a system for localized application of minute amounts of chemical stimulants could be useful for dose related response studies to test new compounds. It could also bring forward the development of a novel type of neuroprostheses.

View Article and Find Full Text PDF

We have developed a microfluidic system--microPrep--for subcellular fractionation of cell homogenates based on dielectrophoretic sorting. Separation of mitochondria isolated from a human lymphoblastoid cell line was monitored by fluorescence microscopy and further characterized by western blot analysis. Robust high throughput and continuous long-term operation for up to 60 h of the microPrep chip system with complex biological samples became feasible as a result of a comprehensive set of technical measures: (i) coating of the inner surfaces of the chip with BSA, (ii) application of mechanical actuators to induce periodic flow patterns, (iii) efficient cooling of the device to ensure integrity of organelle, (iv) a wide channel to provide for high fluidic throughput, and (v) integration of a serial arrangement of 10 dielectrophoretic deflector units to enable separation of samples with a high particle load without clogging.

View Article and Find Full Text PDF

The adenovirus (Ad) E1A proteins alter the expression level and activity of AP-1/ATF transcription factors. Previously we have shown that in AdE1-transformed cells cJun is hyperphosphorylated in its N-terminal transactivation domain, which parallels enhanced transactivation function. To find out whether the interaction between cJun and other cellular proteins is altered, we have searched for proteins which would physically associate with cJun.

View Article and Find Full Text PDF

The proteins encoded by early region 1 A (E1A) of human adenoviruses (Ad) modulate the expression of both adenovirus genes and various host cell genes. With these transcription-regulating properties the E1A proteins redirect the cell's metabolism, which enables them to induce oncogenic transformation in rodent cells. The E1A proteins modulate transcription by interacting both with gene-specific and general cellular transcription factors.

View Article and Find Full Text PDF

The transforming E1A 12S and E1A 13S proteins of human adenovirus type 5 (Ad5) contain two and three conserved regions, respectively. In the present study, the contribution of sequences in the nonconserved N-terminal region of the E1A proteins to morphological transformation and to down-regulation of a number of mitogen-inducible genes was investigated. As described previously, transformation of NRK cells (an established normal rat kidney cell line) results in denser cell growth and a cuboidal cellular morphology.

View Article and Find Full Text PDF

Adenovirus E1A proteins inhibit expression of the collagenase gene but activate expression of the c-jun gene. Both effects are mediated by TPA-responsive elements (TREs), the binding sites for members of the AP-1 transcription factor family. By a process that is independent of the retinoblastoma gene product, E1A distinguishes between different AP-1 factors: in vivo binding of Jun/Jun homodimers and Jun/Fos heterodimers to the collagenase TRE is totally blocked by E1A while, in contrast, there is no inhibition of Jun/ATF-2 binding to the TRE sequences in the c-jun promoter.

View Article and Find Full Text PDF