Publications by authors named "Hagit Eldar-Finkelman"

Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG repeat expansion in the HTT gene encoding a mutant huntingtin (mHtt) protein. mHtt aggregates within neurons causing degeneration primarily in the striatum. There is currently a need for disease-modifying treatments for HD.

View Article and Find Full Text PDF

The introduction of premature termination codons (PTCs), as a result of splicing defects, insertions, deletions, or point mutations (also termed nonsense mutations), lead to numerous genetic diseases, ranging from rare neuro-metabolic disorders to relatively common inheritable cancer syndromes and muscular dystrophies. Over the years, a large number of studies have demonstrated that certain antibiotics and other synthetic molecules can act as PTC suppressors by inducing readthrough of nonsense mutations, thereby restoring the expression of full-length proteins. Unfortunately, most PTC readthrough-inducing agents are toxic, have limited effects, and cannot be used for therapeutic purposes.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is the leading cause of dementia in the world. The pathology of AD is affiliated with the elevation of both tau (τ) and β-amyloid (Aβ) pathologies. Yet, the direct link between natural τ expression on glia cell activity and Aβ remains unclear.

View Article and Find Full Text PDF

Skin pigmentation is paused after sun exposure; however, the mechanism behind this pausing is unknown. In this study, we found that the UVB-induced DNA repair system, led by the ataxia telangiectasia mutated (ATM) protein kinase, represses MITF transcriptional activity of pigmentation genes while placing MITF in DNA repair mode, thus directly inhibiting pigment production. Phosphoproteomics analysis revealed ATM to be the most significantly enriched pathway among all UVB-induced DNA repair systems.

View Article and Find Full Text PDF

Unlabelled: Exercise prevents cancer incidence and recurrence, yet the underlying mechanism behind this relationship remains mostly unknown. Here we report that exercise induces the metabolic reprogramming of internal organs that increases nutrient demand and protects against metastatic colonization by limiting nutrient availability to the tumor, generating an exercise-induced metabolic shield. Proteomic and ex vivo metabolic capacity analyses of murine internal organs revealed that exercise induces catabolic processes, glucose uptake, mitochondrial activity, and GLUT expression.

View Article and Find Full Text PDF

Over the last decade, there has been continuous progress in our understanding of the biology of the protein kinase GSK-3 [...

View Article and Find Full Text PDF

Glycogen synthase kinase-3 (GSK-3) is a highly conserved serine/threonine protein kinase that plays a central role in a wide variety of cellular processes, cognition and behaviour. In a previous study we showed that its α and β isozymes are highly conserved in vertebrates, however the α gene is missing in birds. This selective loss offers a unique opportunity to study the role of GSK-3β independently.

View Article and Find Full Text PDF

The protein kinase, GSK-3, participates in diverse biological processes and is now recognized a promising drug discovery target in treating multiple pathological conditions. Over the last decade, a range of newly developed GSK-3 inhibitors of diverse chemotypes and inhibition modes has been developed. Even more conspicuous is the dramatic increase in the indications that were tested from mood and behavior disorders, autism and cognitive disabilities, to neurodegeneration, brain injury and pain.

View Article and Find Full Text PDF

In Huntington's disease (HD), the mutant huntingtin (mHtt) accumulates as toxic aggregates in the striatum tissue, with deleterious effects on motor-coordination and cognitive functions. Reducing the levels of mHtt is therefore a promising therapeutic strategy. We have previously reported that GSK-3 is a negative regulator of the autophagy/lysosome pathway, which is responsible for intracellular degradation, and is critically important for maintaining neuronal vitality.

View Article and Find Full Text PDF

Neurodegenerative disorders are spreading worldwide and are one of the greatest threats to public health. There is currently no adequate therapy for these disorders, and therefore there is an urgent need to accelerate the discovery and development of effective treatments. Although neurodegenerative disorders are broad ranging and highly complex, they may share overlapping mechanisms, and thus potentially manifest common targets for therapeutic interventions.

View Article and Find Full Text PDF

The serine/threonine kinase, GSK-3, is a promising drug discovery target for treating multiple pathological disorders. Most GSK-3 inhibitors that were developed function as ATP competitive inhibitors, with typical limitations in specificity, safety and drug-induced resistance. In contrast, substrate competitive inhibitors (SCIs), are considered highly selective, and more suitable for clinical practice.

View Article and Find Full Text PDF

Impaired lysosomal activity, which results in defective protein processing, waste accumulation, and protein aggregation, is implicated in a number of disease pathologies. Acidification of lysosomes is a crucial process required for lysosome function. Previously we showed that inhibition of glycogen synthase kinase-3 (GSK-3) enhanced lysosomal acidification in both normal and pathological conditions.

View Article and Find Full Text PDF

Molecular mechanisms underlying learning and memory remain imprecisely understood, and restorative interventions are lacking. We report that intranasal administration of siRNAs can be used to identify targets important in cognitive processes and to improve genetically impaired learning and memory. In mice modeling the intellectual deficiency of Fragile X syndrome, intranasally administered siRNA targeting glycogen synthase kinase-3β (GSK3β), histone deacetylase-1 (HDAC1), HDAC2, or HDAC3 diminished cognitive impairments.

View Article and Find Full Text PDF

Development of protein kinase inhibitors is a focus of many drug discovery programs. A major problem, however, is the limited specificity of the commonly used adenosine triphosphate-competitive inhibitors and the weak inhibition of the more selective substrate-competitive inhibitors. Glycogen synthase kinase-3 (GSK-3) is a promising drug target for treating neurodegenerative disorders, including Alzheimer's disease (AD), but most GSK-3 inhibitors have not reached the clinic.

View Article and Find Full Text PDF

This Podcast features an interview with Hagit Eldar-Finkelman, author of a Research Article that appears in the 15 November 2016 issue of Science Signaling, about a newly developed inhibitor of glycogen synthase kinase 3 (GSK-3). GSK-3 participates in several signaling networks and has been implicated in various pathologies, including neurodegenerative diseases, cognitive impairments, and cancer. Licht-Murava et al developed L807mts, a substrate-competitive peptide inhibitor that blocks GSK-3 activity through an unusual mechanism.

View Article and Find Full Text PDF

Objectives: We examined mechanisms that contribute to the rapid antidepressant effect of ketamine in mice that is dependent on glycogen synthase kinase-3 (GSK3) inhibition.

Methods: We measured serotonergic (5HT)-2C-receptor (5HTR2C) cluster microRNA (miRNA) levels in mouse hippocampus after administering an antidepressant dose of ketamine (10 mg/kg) in wild-type and GSK3 knockin mice, after GSK3 inhibition with L803-mts, and in learned helpless mice.

Results: Ketamine up-regulated cluster miRNAs 448-3p, 764-5p, 1264-3p, 1298-5p and 1912-3p (2- to 11-fold).

View Article and Find Full Text PDF

An antidepressant dose of the rapidly-acting ketamine inhibits glycogen synthase kinase-3 (GSK3) in mouse hippocampus, and this inhibition is required for the antidepressant effect of ketamine in learned helplessness depression-like behavior. Here we report that treatment with an antidepressant dose of ketamine (10mg/kg) increased expression of insulin-like growth factor 2 (IGF2) in mouse hippocampus, an effect that required ketamine-induced inhibition of GSK3. Ketamine also inhibited hippocampal GSK3 and increased expression of hippocampal IGF2 in mice when administered after the induction of learned helplessness.

View Article and Find Full Text PDF

GSK-3 (glycogen synthase kinase-3) is a serine/threonine kinase which is a critical regulator in neuronal signaling, cognition, and behavior. We have previously shown that unlike other vertebrates that harbor both α and β GSK-3 genes, the α gene is missing in birds. Therefore, birds can be used as a new animal model to study the roles of GSK-3β in behavior and in regulating adult neurogenesis.

View Article and Find Full Text PDF

Compound 5 was selected from our in-house library as a suitable starting point for the rational design of new GSK-3β inhibitors. MC/FEP calculations of 5 led to the identification of a structural class of new GSK-3β inhibitors. Compound 18 inhibited GSK-3β with an IC50 of 0.

View Article and Find Full Text PDF

Aberrant regulation of glycogen synthase kinase-3 (GSK-3) is implicated in Alzheimer's disease (AD), but the mechanisms involved remain elusive. Our recent study shows that GSK-3 impairs lysosomal acidification and that inhibition of GSK-3 re-acidified lysosomes in brains of AD mice. This effect was accompanied by reductions in β-amyloid pathology and amelioration of cognitive deficits.

View Article and Find Full Text PDF

Experimental autoimmune encephalomyelitis (EAE) is a rodent model of multiple sclerosis (MS), a debilitating autoimmune disease of the CNS, for which only limited therapeutic interventions are available. Because MS is mediated in part by autoreactive T cells, particularly Th17 and Th1 cells, in the current study, we tested whether inhibitors of glycogen synthase kinase-3 (GSK3), previously reported to reduce Th17 cell generation, also alter Th1 cell production or alleviate EAE. GSK3 inhibitors were found to impede the production of Th1 cells by reducing STAT1 activation.

View Article and Find Full Text PDF

Inhibiting glycogen synthase kinase-3 (GSK-3) activity has become an attractive approach for treatment of neurodegenerative and psychiatric disorders. Diverse GSK-3 inhibitors have been reported and used in cellular and in vivo models. A major challenge, however, is achieving selectivity.

View Article and Find Full Text PDF

Accumulation of β-amyloid (Aβ) deposits is a primary pathological feature of Alzheimer disease that is correlated with neurotoxicity and cognitive decline. The role of glycogen synthase kinase-3 (GSK-3) in Alzheimer disease pathogenesis has been debated. To study the role of GSK-3 in Aβ pathology, we used 5XFAD mice co-expressing mutated amyloid precursor protein and presenilin-1 that develop massive cerebral Aβ loads.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session5h7l4g0ab9i8a3stkorp16dkp5d5648j): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once