Publications by authors named "Hagit Aviv"

Rechargeable Mg-ion Batteries (RMB) containing a Mg metal anode offer the promise of higher specific volumetric capacity, energy density, safety, and economic viability than lithium-ion battery technology, but their realization is challenging. The limited availability of suitable inorganic cathodes compatible with electrolytes relevant to Mg metal anode restricts the development of RMBs. Despite the promising capability of some oxides to reversibly intercalate Mg ions at high potential, its lack of stability in chloride-containing ethereal electrolytes, relevant to Mg metal anode hinders the realization of a full practical RMB.

View Article and Find Full Text PDF
Article Synopsis
  • The development of all-solid-state lithium batteries (ASSLBs) faces challenges in lowering fabrication costs without losing performance.* -
  • A new sulfide ASSLB features a Co-free LiNiO cathode with a unique LiAlZnO protective layer that enhances stability and reduces undesirable reactions at the electrolyte interface.* -
  • This innovative approach results in impressive performance metrics, including high capacity, cycling stability, and insights on avoiding the use of costly materials while maintaining energy efficiency.*
View Article and Find Full Text PDF

Transition-metal dichalcogenides (TMDCs) are unique layered materials with exotic properties. So, examining their structures holds tremendous importance. 2H-MoSe (analogous to MoS; Gr.

View Article and Find Full Text PDF

Distinguishing between d and l enantiomers is of important scientific interest, especially for the pharmaceutical industry. Enantiomeric differentiation in the solid form is repeatedly presented as a challenge in the research community. Raman spectroscopy is a nondestructive tool, widely used for the characterization of different materials by probing their vibrational modes.

View Article and Find Full Text PDF

Owing to its high energy density, LiNiCoMnO (NMC811) is a cathode material of prime interest for electric vehicle battery manufacturers. However, NMC811 suffers from several irreversible parasitic reactions that lead to severe capacity fading and impedance buildup during prolonged cycling. Thin surface protection films coated on the cathode material mitigate degradative chemomechanical reactions at the electrode-electrolyte interphase, which helps to increase cycling stability.

View Article and Find Full Text PDF

Long-range structures and dynamics are central to coordination chemistry, yet are hard to identify experimentally. By combining polarized low-frequency Raman spectroscopy with single crystal XRD to study barium nitrilotriacetate, a metal-organic coordination polymer and a useful pyrolysis precursor, we could assign Raman peaks experimentally to layer shear motions and perpendicular hydrogen bond vibrations. These directional long-range interactions further determined the preferred fracture directions during crystallization, establishing an important link between structural motifs in the precursor, and the porosity of the carbon it yields upon pyrolysis.

View Article and Find Full Text PDF

Among the most reliable techniques for exfoliation of two-dimensional (2D) layered materials, sonication-assisted liquid-phase exfoliation (LPE) is considered as a cost-effective and straightforward method for preparing graphene and its 2D inorganic counterparts at reasonable sizes and acceptable levels of defects. Although there were rapid advances in this field, the effect and outcome of the sonication frequency are poorly understood and often ignored, resulting in a low exfoliation efficiency. Here, we demonstrate that simple mild bath sonication at a higher frequency and low power positively contributes to the thickness, size, and quality of the final exfoliated products.

View Article and Find Full Text PDF

Raman spectroscopy is a widely used characterization technique in material science. It is a non-destructive tool with relatively simple instrumentation, and provides intrinsic qualitative information of analytes by probing their vibrational modes. In many cases, Raman enhancement is essential for detecting low-intensity signals in high-noise environments, spectrally unresolved features, and hidden modes.

View Article and Find Full Text PDF

The pharmaceutical industry is in need of new techniques to identify the chirality of solids due to regulatory and safety concerns regarding the biological activity of enantiomers. In this study, we present for the first time the application of low-frequency Raman spectroscopy as a new and sensitive method for analyzing the chiral purity of crystals. Using this method, we were able to identify small amounts, as low as 1 % w/w, of an enantiomer in racemic crystals.

View Article and Find Full Text PDF

We present a new method for differentiating racemic crystals from enantiopure crystals. Recently, developments in optical filters have enabled the facile use of Raman spectroscopy to detect low-frequency vibrational (LFV) modes. Here, for the first time, we use Raman spectroscopy to characterize the LFV modes for crystalline organic materials composed of chiral molecules.

View Article and Find Full Text PDF

Rapid and accurate Gram differentiation is paramount as the first step of pathogen identification and antibiotics administration. However, the current method requires additional reagents, is time-consuming, and is operator dependent. Here we show the principle of tip enhanced Raman spectroscopy (TERS) can differentiate between Gram negative and positive species, by detecting the changes in tip-enhancement in the Raman scattering from the bacteria's lipid-bilayer membrane, which specifically enhances Gram negative bacteria.

View Article and Find Full Text PDF

The ability to confine excitons within monolayers has led to fundamental investigations of nonradiative energy transfer, super-radiance, strong light-matter coupling, high-efficiency light-emitting diodes, and recently lasers in lateral resonator architectures. Vertical cavity surface emitting lasers (VCSELs), in which lasing occurs perpendicular to the device plane, are critical for telecommunications and large-scale photonics integration, however strong optical self-absorption and low fluorescence quantum yields have thus far prevented coherent emission from a monolayer microcavity device. Here we show lasing from a monolayer VCSEL using a single molecule thick film of amphiphilic fluorescent dye, assembled via Langmuir-Blodgett deposition, as the gain layer.

View Article and Find Full Text PDF

Phase separation occurs whenever a solvent leaves a solution of strongly incompatible polymers. This can happen in bulk and in films. Films can be tailored as substrates for multiple applications such as solar cells, surface catalysis, and antireflection coatings.

View Article and Find Full Text PDF

Rapid and accurate detection of pathogens is paramount to human health. Spectroscopic techniques have been shown to be viable methods for detecting various pathogens. Enhanced methods of Raman spectroscopy can discriminate unique bacterial signatures; however, many of these require precise conditions and do not have in vivo replicability.

View Article and Find Full Text PDF

Pulsed laser deposition (PLD) is widely used in combinatorial material science, as it enables rapid fabrication of different composite materials. Nevertheless, this method was usually limited to small substrates, since PLD deposition on large substrate areas results in severe lateral inhomogeneity. A few technical solutions for this problem have been suggested, including the use of different designs of masks, which were meant to prevent inhomogeneity in the thickness, density, and oxidation state of a layer, while only the composition is allowed to be changed.

View Article and Find Full Text PDF

All-oxide-based photovoltaics (PVs) encompass the potential for extremely low cost solar cells, provided they can obtain an order of magnitude improvement in their power conversion efficiencies. To achieve this goal, we perform a combinatorial materials study of metal oxide based light absorbers, charge transporters, junctions between them, and PV devices. Here we report the development of a combinatorial internal quantum efficiency (IQE) method.

View Article and Find Full Text PDF

Bismuth oxide nanoparticles of 12.1 ± 3.0 nm diameter were prepared by thermal decomposition of bismuth acetate dissolved in ethylene glycol in the presence of an oxidizing agent.

View Article and Find Full Text PDF

Objectives: Embolization therapy is gaining importance in the treatment of malignant lesions, and even more in benign lesions. Current embolization materials are not visible in imaging modalities. However, it is assumed that directly visible embolization material may provide several advantages over current embolization agents, ranging from particle shunt and reflux prevention to improved therapy control and follow-up assessment.

View Article and Find Full Text PDF

Core P(MAOETIB-GMA) microparticles of 40-200 microm were prepared by suspension copolymerization of the iodinated monomer 2-methacryloyloxyethyl (2,3,5-triiodobenzoate), MAOETIB, with a low concentration of the monomer glycidyl methacrylate, GMA, which formed hydrophilic surfaces on the particles. Magnetic gamma-Fe(2)O(3)/P(MAOETIB-GMA) core-shell microparticles were prepared by coating the aforementioned core particles through nucleation of iron oxide nanoparticles on the surfaces of the P(MAOETIB-GMA) particles. This was followed by stepwise growth of thin iron oxide layers.

View Article and Find Full Text PDF

Recently we described iodinated homopolymeric radiopaque nanoparticles of 28.9+/-6.3 nm dry diameter synthesized by emulsion polymerization of 2-methacryloyloxyethyl(2,3,5-triiodobenzoate) (MAOETIB).

View Article and Find Full Text PDF