Importance: As average life expectancy increases, the role of beauty in quality of life (QOL) becomes more important. Invasive rejuvenation methods, such as cosmetic surgery and botulinum toxin injections, do not address the underlying causes of facial aging, are expensive, and carry inherent risks. Acupuncture, as a holistic alternative, may offer a safer method for facial rejuvenation by addressing the overall health of the body.
View Article and Find Full Text PDFObjective: Diabetes in pregnancy is a prevalent disease that can affect the central nervous system of the fetus by hyperglycemia. This study aimed to investigate the impact of maternal diabetes on neuronal apoptosis in the superior colliculus (SC) and the lateral geniculate nucleus (LGN) in male neonates born to diabetic mothers.
Materials And Methods: In this experimental study, female adult rats were separated into three groups: control, diabetic (induced using an intraperitoneal injection of streptozotocin), and insulin-treated diabetic [diabetes controlled by subcutaneous neutral protamine hagedorn (NPH)-insulin injection].
Aims: This study investigates the impact of maternal diabetes on the expression of α2-adrenergic and M2 muscarinic receptors in the primary visual cortex of male offspring born to diabetic rats.
Main Methods: In adult female rats, a single dose of intraperitoneal streptozotocin (STZ) was used to induce diabetes (Diabetic group). Diabetes was controlled with insulin in the Insulin-treated group.
Objectives: Diabetes during gestation is one of the most common pregnancy complications and has adverse effects on offspring, including a negative impact on the offspring's central nervous system (CNS). Diabetes is a metabolic disease associated with visual impairment. Due to the importance of the lateral geniculate body (LGB) in the visual pathway, the present study examined the effect of maternal diabetes on the expression of gamma-aminobutyric acid (GABA and GABA) and metabotropic Glutamate (mGlu2) receptors in the LGB of male neonates of diabetic rats.
View Article and Find Full Text PDFNeurotransmitters and their receptors are key molecules in information transfer between neurons, thus enabling inter-areal communication. Therefore, multimodal atlases integrating the brain's cyto- and receptor architecture constitute crucial tools to understand the relationship between its structural and functional segregation. Cholinergic muscarinic M receptors have been shown to be an evolutionarily conserved molecular marker of primary sensory areas in the mammalian brain.
View Article and Find Full Text PDFAims: This study examines the impact of maternal diabetes on the expression of GABA, GABA, and mGlu2 receptors in the primary visual cortex layers of male rat newborns.
Main Methods: In diabetic group (Dia), diabetes was induced in adult female rats using an intraperitoneal dose of Streptozotocin (STZ) 65 (mg/kg). Diabetes was managed by daily subcutaneous injection of NPH insulin in insulin-treated diabetic group (Ins).
Objectives: Few studies have examined the molecular alterations in the auditory pathway of infants of diabetic mothers, notwithstanding the fact that maternal diabetes may have an impact on the development of the neonatal peripheral and central nervous systems. Male newborn rats were studied to determine how maternal diabetes affected the expression of gamma-aminobutyric acid (GABA and GABA) and metabotropic glutamate (mGlu2) receptors in the inferior colliculus (IC) in this research.
Methods: Female rats were given a single intraperitoneal injection of streptozotocin (STZ) at a 65 mg/kg dose to develop a model of diabetic mothers.
Aims: Despite the high prevalence of diabetes in the world, its possible effects throughut pregnancy on neonatal auditory nervous system development are still unknown. In the present research, maternal diabetes' impact on the M2 and Adrenergic receptors expression in the inferior colliculus (IC) of male newborn rats was investigated.
Main Methods: Female rats were grouped into three: sham, insulin-treated diabetic, and diabetic.
N-methyl-d-aspartate receptors (NMDARs) are expressed abundantly in the brain and play a crucial role in the regulation of central nervous system (CNS) development, learning, and memory. During early neuronal development, NMDARs modulate neurogenesis, neuronal differentiation and migration, and synaptogenesis. The present study aimed to examine the developmental expression of NMDARs subunits, NR1 and NR2B, in the developing hippocampus of neonatal rats during the first two postnatal weeks.
View Article and Find Full Text PDFThe aim of the present study was the investigation of the effects of mobile phones at different daily exposure times on the hippocampal expression of two apoptotic genes. Forty-eight male BALB/c mice were randomly divided into six groups with 8 animals in each group. Four experimental groups were respectively exposed to electromagnetic waves for 0.
View Article and Find Full Text PDFNowadays, different kinds of nanoparticles (NPs) are produced around the world and used in many fields and products. NPs can enter the body and aggregate in the various organs including brain. They can damage neurons, in particular dopaminergic neurons in the substantia nigra (SN) and striatal neurons which their lesion is associated with Parkinson's disease (PD).
View Article and Find Full Text PDFThe purpose of this study was to describe the distinct regional distribution patterns of expression of the α7 and α4 subunits of nicotinic acetylcholine receptors (nAChRs) and their left-right lateralisation in the rat hippocampus during the first 2 weeks of postnatal (P) development. Eighteen male pups were randomly divided into three groups: P0, P7, and P14. After removing the newborn brains, real-time polymerase chain reaction, western blot, and immunohistochemistry techniques were used to evaluate expression of the receptors.
View Article and Find Full Text PDFHuman chorionic mesenchymal stem cells (HCMSCs) have been recognized as a desirable choice for cell therapy in neurological disorders such as Parkinson's disease (PD). Due to invaluable features of HCMSCs including their immunomodulatory and immunosuppressive properties, easily accessible and less differentiated compared to other types of MSCs, HCMSCs provide a great hope for regenerative medicine. Thus, the purpose of this study was to determine the in vitro and in vivo efficacy of HCMSCs-derived dopaminergic (DA) neuron-like cells with regard to PD.
View Article and Find Full Text PDFGABA is the chief inhibitory neurotransmitter in the adult brain. However, in the developing brain it acts as an excitatory transmitter causing depolarization. Thereby, activates calcium-dependent processes that are crucial for brain development.
View Article and Find Full Text PDFIn Parkinson's disease, nigral dopamine neurons are lost and the structure of the striatum is progressively degraded. These events lead to a substantial neuronal loss in the striatum, changing spatial pattern of the neurons and glial cells, and associated cellular connections. Therefore, the aim of this study was to develop a new insight into whether the Parkinson's disease causes a change in the spatial arrangement of the neurons and glial cells in the striatum.
View Article and Find Full Text PDFIn recent years, abuse of synthetic cathinones, in particular, mephedrone, has increased among young adults worldwide. The study aim is to investigate the effects of mephedrone exposure during the gestational period on mice offspring outcomes, focusing on hippocampal neurotoxicity. The pregnant mice received mephedrone (50 mg/kg, sc) on a regular schedule (once daily on all days, from day 5 to 18 of gestation) or repeated schedule (thrice daily on day 5, 6, 11, 12, 17, and 18 of gestation) to simulate regular or recreational use of mephedrone, respectively.
View Article and Find Full Text PDFObjectives: The increasing rate of over using cell phones has been considerable in youths and pregnant women. We examined the effect of mobile phones radiation on genes expression variation on cerebellum of BALB/c mice before and after of the birth.
Materials And Methods: In this study, a mobile phone jammer, which is an instrument to prevent receiving signals between cellular phones and base transceiver stations (two frequencies 900 and 1800 MHz) for exposure was used and twelve pregnant mice (BALB/c) divided into two groups (n=6), first group irradiated in pregnancy period (19th day), the second group did not irradiate in pregnancy period.
Introduction: The usage of Titanium dioxide nanoparticles (TiO-NPs) covers a vast area in different fields ranging from cosmetics and food to the production of drugs. Maternal exposure to TiO-NPs during developmental period has been associated with hippocampal injury and with a decrease in learning and memory status of the offspring. However, little is known about its injury mechanism.
View Article and Find Full Text PDFDiabetes during pregnancy impairs the development of the central nervous system (CNS) and causes cognitive and behavioral abnormalities in offspring. However, the exact mechanism by which the maternal diabetes affects the development of the brain remains to be elucidated. The aim of the present study was to investigate the effects of maternal diabetes in pregnancy on the expression of Bcl-2 and Bax genes and the numerical density of degenerating dark neurons (DNs) in the hippocampus of offspring at the first postnatal two weeks.
View Article and Find Full Text PDFLead exposure has negative effects on developing nervous system and induces apoptosis in newly generated neurons. Natural antioxidants (i.e.
View Article and Find Full Text PDFBackground: Diabetes in pregnancy has a detrimental effect on central nervous system (CNS) development and is associated with an increased risk of short- and long-term neurocognitive impairment in the offspring. This study aimed to investigate the effect of maternal diabetes and also insulin treatment on the numerical density of apoptotic cells in rat neonate's hippocampi during the first two postnatal weeks.
Methods: Wistar female rats were maintained diabetic from a week before gestation through parturition and their male pup's brains were collected at postnatal days (P); P0, P7 and P14, equivalent to the third trimester in human.
Objective: Simple Febrile Seizure (SFS) is the most common seizure disorder in childhood, and is frequently described as inoffensive disorder. Nevertheless, there is evidence suggesting the association between neonatal febrile seizures and hippocampal abnormalities in adulthood. This study was conducted at evaluating the hippocampal expression of pro-apoptotic Bax and anti-apoptotic Bcl-2 proteins following SFS induction in rat neonates.
View Article and Find Full Text PDF