Publications by authors named "Hagenmeyer V"

The morphometric assessment of the corneal subbasal nerve plexus (SNP) by confocal microscopy holds great potential as a sensitive biomarker for various ocular and systemic conditions and diseases. Automated wide-field montages (or large-area mosaic images) of the SNP provide an opportunity to overcome the limited field of view of the available imaging systems without the need for manual, subjective image selection for morphometric characterization. However, current wide-field montaging solutions usually calculate the mosaic image after the examination session, without a reliable means for the clinician to predict or estimate the resulting mosaic image quality during the examination.

View Article and Find Full Text PDF

When approaching thyroid gland tumor classification, the differentiation between samples with and without "papillary thyroid carcinoma-like" nuclei is a daunting task with high inter-observer variability among pathologists. Thus, there is increasing interest in the use of machine learning approaches to provide pathologists real-time decision support. In this paper, we optimize and quantitatively compare two automated machine learning methods for thyroid gland tumor classification on two datasets to assist pathologists in decision-making regarding these methods and their parameters.

View Article and Find Full Text PDF

The electrical energy system has attracted much attention from an increasingly diverse research community. Many theoretical predictions have been made, from scaling laws of fluctuations to propagation velocities of disturbances. However, to validate any theory, empirical data from large-scale power systems are necessary but are rarely shared openly.

View Article and Find Full Text PDF
Article Synopsis
  • There is growing interest in using medical gases like ozone for treating conditions such as herniated disks and chronic wounds, but measuring dissolved ozone in the body remains a challenge.
  • Recent research discusses advancements in ozone sensor technology from 2016 to 2020, including both gas sensors and sensors for dissolved ozone.
  • The review highlights improvements in factors like measurement temperature, range, response time, and introduces inkjet-printing as a promising method for developing sensors for medical applications.
View Article and Find Full Text PDF

The present paper addresses the swing equation with additional delayed damping as an example for pendulumlike systems. In this context, it is proved that recurring sub- and supercritical Hopf bifurcations occur if time delay is increased. To this end, a general formula for the first Lyapunov coefficient in second order systems with additional delayed damping and delay-free nonlinearity is given.

View Article and Find Full Text PDF

A novel method is demonstrated for ordered deposition of thin lamellar objects from a liquid environment onto solid substrates by solid/fluid/solid-driven organisation. Surface functionalisation forms a template pattern that accumulates the lamellar objects by site-selective wetting of the target area without the need for a physical fluid containment. Contrary to conventional handling methods, no mechanical contact occurs, which facilitates the ordered deposition without wrinkles or ruptures.

View Article and Find Full Text PDF

The present paper reports on the development of a biodegradable overmolded orthopedic implant: a metal bone fixing screw, which has been overmolded with a functionalized thin layer of biodegradable polymer to enhance cell adhesion during the healing process. The main challenges were to integrate precise, high-throughput and repeatable solutions to achieve a thin, defect-free structured polymer layer and to ensure a high and consistent implant quality. The work carried out entailed determining proper materials (Purasorb PDLG 5010) for the biodegradable overmolding layer and its economical substitute (NaKu PLA 100HF) to be used during initial tool and process development, designing the surface structure of the overmolded polymer layer, development of injection molding tools, as well as feeding and handling procedures.

View Article and Find Full Text PDF

The capability of corneal confocal microscopy (CCM) to acquire high-resolution in vivo images of the densely innervated human cornea has gained considerable interest in using this non-invasive technique as an objective diagnostic tool for staging peripheral neuropathies. Morphological alterations of the corneal subbasal nerve plexus (SNP) assessed by CCM have been shown to correlate well with the progression of neuropathic diseases and even predict future-incident neuropathy. Since the field of view of single CCM images is insufficient for reliable characterisation of nerve morphology, several image mosaicking techniques have been developed to facilitate the assessment of the SNP in large-area visualisations.

View Article and Find Full Text PDF