Publications by authors named "Hagen Telg"

The radiative effects of wildfires have been traditionally estimated by models using radiative transfer calculations. Assessment of model-predicted radiative effects commonly involves information on observation-based aerosol optical properties. However, lack or incompleteness of this information for dense plumes generated by intense wildfires reduces substantially the applicability of this assessment.

View Article and Find Full Text PDF

Accurate representation of atmospheric aerosol properties is a long-standing problem in atmospheric research. Modern pilotless aerial systems provide a new platform for atmospheric in situ measurement. However, small airborne platforms require miniaturized instrumentation due to apparent size, power, and weight limitations.

View Article and Find Full Text PDF

Electronic interactions in low-dimensional nanomaterial heterostructures can lead to novel optical responses arising from exciton delocalization over the constituent materials. Similar phenomena have been suggested to arise between closely interacting semiconducting carbon nanotubes of identical structure. Such behavior in carbon nanotubes has potential to generate new exciton physics, impact exciton transport mechanisms in nanotube networks, and place nanotubes as one-dimensional models for such behaviors in systems of higher dimensionality.

View Article and Find Full Text PDF

An enhanced aerosol layer near the tropopause over Asia during the June-September period of the Asian summer monsoon (ASM) was recently identified using satellite observations. Its sources and climate impact are presently not well-characterized. To improve understanding of this phenomenon, we made in situ aerosol measurements during summer 2015 from Kunming, China, then followed with a modeling study to assess the global significance.

View Article and Find Full Text PDF

A laboratory chilled mirror hygrometer (CMH), exposed to an airstream containing water vapor (H2O) and nitric acid (HNO3), has been used to demonstrate the existence of a persistent water-nitric acid condensate that has a saturation H2O vapor pressure greater than that of hexagonal ice (Ih). The condensate was routinely formed on the mirror by removing HNO3 from the airstream following the formation of an initial condensate on the mirror that resembled nitric acid trihydrate (NAT). Typical conditions for the formation of the persistent condensate were a H2O mixing ratio greater than 18 ppm, pressure of 128 hPa, and mirror temperature between 202 and 216 K.

View Article and Find Full Text PDF

Using a macroscopic ensemble of highly enriched (6,5) single-wall carbon nanotubes, combined with high signal-to-noise ratio and time-dependent differential transmission spectroscopy, we have generated vibrational modes in an ultrawide spectral range (10-3000 cm(-1)). A total of 14 modes were clearly resolved and identified, including fundamental modes of A, E1, and E2 symmetries and their combinational modes involving two and three phonons. Through comparison with continuous wave Raman spectra as well as calculations based on an extended tight-binding model, we were able to identify all the observed peaks and determine the frequencies of the individual and combined modes.

View Article and Find Full Text PDF

The search for environmentally clean energy sources has spawned a wave of research into the use of carbon nanomaterials for photovoltaic applications. In particular, research using semiconducting single-walled carbon nanotubes has undergone dramatic transformations due to the availability of high quality samples through colloidal separation techniques. This has led to breakthrough discoveries on how energy and charge transport occurs in these materials and points to applications in energy harvesting.

View Article and Find Full Text PDF

Raman spectroscopy on the radial breathing mode is a common tool to determine the diameter d or chiral indices (n,m) of single-wall carbon nanotubes. In this work we present an alternative technique to determine d and (n,m) based on the high-energy G(-) mode. From resonant Raman scattering experiments on 14 highly purified single chirality (n,m) samples we obtain the diameter, chiral angle, and family dependence of the G(-) and G(+) peak position.

View Article and Find Full Text PDF

We analyze the high-energy Raman modes, G+ and G-, in a pair of one metallic and one semiconducting nanotubes. By combining Rayleigh scattering with Raman resonance profiles of the radial breathing mode and the high-energy modes, we show that the observed G- and G+ peaks can originate from longitudinal optical phonons of different tubes. The G- peak is the longitudinal mode of the metallic tube; it is broadened and downshifted due to strong electron-phonon coupling in the metallic nanotube.

View Article and Find Full Text PDF

Cathodoluminescence (CL) spectra from silicon doped and undoped wurtzite n-type GaN have been measured in a SEM under a wide range of electron beam excitation conditions, which include accelerating voltage, beam current, magnification, beam diameter, and specimen temperature. The CL intensity dependence on excitation density was analyzed using a power-law model (I CL proportional, variant J m ) for each of the observed CL bands in this material. The yellow luminescence band present in both silicon and undoped GaN exhibits a close to cube root (m = 0.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiond96u3prm8fnhpc61el0vg76oheic0l2f): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once