Publications by authors named "Hagay Shpaisman"

Certain ocular conditions result from the non-physiological presence of intraocular particles, leading to visual impairment and potential long-term damage. This happens when the normally clear aqueous humor becomes less transparent, thus blocking the visual axis and by intraocular pressure elevation due to blockage of the trabecular meshwork, as seen in secondary open-angle glaucoma (SOAG). Some of these "particle-related pathologies" acquire ocular conditions like pigment dispersion syndrome, pseodoexfoliation and uveitis.

View Article and Find Full Text PDF

Various conditions cause dispersions of particulate matter to circulate inside the anterior chamber of a human eye. These dispersed particles might reduce visual acuity or promote elevation of intraocular pressure (IOP), causing secondary complications such as particle related glaucoma, which is a major cause of blindness. Medical and surgical treatment options are available to manage these complications, yet preventive measures are not currently available.

View Article and Find Full Text PDF

Production of multilayered microstructures composed of conducting and insulating materials is of great interest as they can be utilized as microelectronic components. Current proposed fabrication methods of these microstructures include top-down and bottom-up methods, each having their own set of drawbacks. Laser-based methods were shown to pattern various materials with micron/sub-micron resolution; however, multilayered structures demonstrating conducting/insulating/conducting properties were not yet realized.

View Article and Find Full Text PDF

Micropatterns of conductive polymers are key for various applications in the fields of flexible electronics and sensing. A bottom-up method that allows high-resolution printing without additives is still lacking. Here, such a method is presented based on microprinting by the laser-induced microbubble technique (LIMBT).

View Article and Find Full Text PDF

Acoustic manipulation is an emerging non-invasive method enabling precise spatial control of cells in their native environment. Applying this method for organizing neurons is invaluable for neural tissue engineering applications. Here, we used surface and bulk standing acoustic waves for large-scale patterning of Dorsal Root Ganglia neurons and PC12 cells forming neuronal cluster networks, organized biomimetically.

View Article and Find Full Text PDF

Linear optics based nanoscopy previously reached resolution beyond the diffraction limit, illuminating samples in the visible light regime while allowing light to interact with freely moving metallic nanoparticles. However, the hydrodynamics governing the nanoparticle motion used to scan the sample is very complex and has low probability of achieving appropriate and fast mapping in practice. Hence, an implementation of the technique on real biological samples has not been demonstrated so far.

View Article and Find Full Text PDF

Micro-patterning of a metal organic framework (MOF) from a solution of precursors is achieved by local laser heating. Nano-sized MOFs are formed, followed by rapid assembly due to convective flows around a heat-induced micro-bubble. This laser-induced bottom-up technique is the first to suggest simultaneous synthesis and micro-patterning of MOFs, alleviating the need for pre-preparation and stabilization.

View Article and Find Full Text PDF

Optical trapping is a powerful optical manipulation technique for controlling various mesoscopic systems that allows formation of tailor-made polymeric micro-sized colloids by directed coalescence of nucleation sites. However, control over the size of a single colloid requires constant monitoring of the growth process and deactivation of the optical trap once it reaches the required dimensions. Moreover, producing more than one colloid requires moving the sample to a pristine location where the process must be repeated.

View Article and Find Full Text PDF

The shape and porosity of polymeric colloids are two properties that highly influence their ability to accomplish specific tasks. For micro-sized colloids, the control of both properties was demonstrated by the photo-induced phase separation of droplets of NOA81-a thiol-ene based UV-curable adhesive-mixed with acetone, water, and polyethylene glycol. The continuous phase was perfluoromethyldecalin, which does not promote phase separation prior to UV activation.

View Article and Find Full Text PDF

Gold nanoparticles are widely exploited in phototherapy. Owing to their biocompatibility and their strong visible-light surface plasmonic resonance, these particles also serve as contrast agents for cell image enhancement and super-resolved imaging. Yet, their optical signal is still insufficiently strong for many important real-life applications.

View Article and Find Full Text PDF

Interest in polydimethylsiloxane (PDMS) microfluidic devices has grown dramatically in recent years, particularly in the context of improved performance lab-on-a-chip devices with decreasing channel size enabling more devices on ever smaller chips. As channels become smaller, the resistance to flow increases and the device structure must be able to withstand higher internal pressures. We report herein the fabrication of microstructured surfaces that promote water mobility independent of surface static wetting properties.

View Article and Find Full Text PDF

Hypothesis: Temperature-controlled self-faceting of liquid droplets has been recently discovered in surfactant-stabilized alkane-in-water emulsions. We hypothesize that similar self-faceting may occur in emulsion droplets of UV-polymerizable linear hydrocarbons. We further hypothesize that the faceted droplet shapes can be fixed by UV-initiated polymerization, thus providing a new route towards the production of solid polyhedra.

View Article and Find Full Text PDF
Article Synopsis
  • Directed-assembly using standing surface acoustic waves (SSAWs) efficiently organizes nanoparticles by exploiting their acoustic contrast with the surrounding medium, applicable to various dispersed systems.
  • Previous work showed only reversible arrangements, but controlling colloidal surface chemistry can achieve permanent microstructures.
  • Introducing chloride ions during nanoparticle assembly enhances sintering, leading to the creation of stable silver microstructures, and allows for the formation of longer, thinner structures without the constraints of traditional methods.
View Article and Find Full Text PDF

The laser-induced microbubble technique (LIMBT) has recently been developed for micro-patterning of various materials. In this method, a laser beam is focused on a dispersion of nanoparticles leading to the formation of a microbubble due to laser heating. Convection currents around the microbubble carry nanoparticles so that they become pinned to the bubble/substrate interface.

View Article and Find Full Text PDF

We present a novel concept where optical traps are used to influence an ongoing polymerization process of emulsion droplets. By directed coalescence and partial fusion of intermediate nucleation sites, spherical and elongated colloids with specific dimensions are formed. The strength of this approach lies in its versatility and ease of making various changes to the end product without the need for chemical modifications.

View Article and Find Full Text PDF

Holographic video microscopy offers valuable and previously unavailable insights into the progress of colloidal synthesis by providing measurements of the size and refractive index of individual colloidal particles in the dispersion. These measurements are precise enough to track subtle changes in particles' properties and rapid enough for real-time process control. We demonstrate this technique by applying it to the synthesis of monodisperse samples of crosslinked polydimethysiloxane (PDMS) spheres.

View Article and Find Full Text PDF

Electrical transport studies across nm-thick dielectric films can be complicated, and datasets compromised, by local electrical breakdown enhanced by nm-sized features. To avoid this problem we need to know the minimal voltage that causes the enhanced electrical breakdown, a task that usually requires numerous measurements and simulation of which is not trivial. Here we describe and use a model system, using a "floating" gold pad to contact Au nanoparticles, NPs, to simultaneously measure numerous junctions with high aspect ratio NP contacts, with a dielectric film, thus revealing the lowest electrical breakdown voltage of a specific dielectric-nanocontact combination.

View Article and Find Full Text PDF

Electronic transport across n-Si-alkyl monolayer/Hg junctions is, at reverse and low forward bias, independent of alkyl chain length from 18 down to 1 or 2 carbons! This and further recent results indicate that electron transport is minority, rather than majority carrier dominated, occurs via generation and recombination, rather than (the earlier assumed) thermionic emission, and, as such, is rather insensitive to interface properties. The (m)ethyl results show that binding organic molecules directly to semiconductors provides semiconductor/metal interface control options, not accessible otherwise.

View Article and Find Full Text PDF

Monolayers of alkyl chains, attached through direct Si-C bonds to Si(111), via phosphonates to GaAs(100) surfaces, or deposited as alkyl-silane monolayers on SiO2, are investigated by ultraviolet and inverse photoemission spectroscopy and X-ray absorption spectroscopy. Exposure to ultraviolet radiation from a He discharge lamp, or to a beam of energetic electrons, leads to significant damage, presumably associated with radiation- or electron-induced H-abstraction leading to carbon-carbon double-bond formation in the alkyl monolayer. The damage results in an overall distortion of the valence spectrum, in the appearance of (occupied) states above the highest occupied molecular orbital of the alkyl molecule, and in a characteristic (unoccupied state) pi resonance at the edge of the carbon absorption peak.

View Article and Find Full Text PDF