Publications by authors named "Hagar Sharabani"

Objective: Differentiation therapy with the hormonal form of vitamin D, 1alpha,25-dihydroxyvitamin D(3) (1,25D(3)), is a promising approach to treatment of acute myeloid leukemia (AML); however, 1,25D(3) induces hypercalcemia at pharmacologically active doses. We investigated the in vitro and in vivoantileukemic efficacy of combined treatment with non-toxic doses of a low-calcemic 1,25D(3) analogue, 1,25-dihydroxy-21(3-hydroxy-3-methyl-butyl)-19-nor-cholecalciferol (19-nor-Gemini; Ro27-5646), and rosemary plant agents in a mouse model of AML.

Methods: Proliferation and differentiation of WEHI-3B D- (WEHI) murine myelomonocytic leukemia cellsin vitro were determined by standard assays.

View Article and Find Full Text PDF

We combined pharmacological studies and electrophysiological recordings to investigate modifications in muscarinic acetylcholine (ACh) receptors (mAChR) in the rat olfactory (piriform) cortex, following odor-discrimination rule learning. Rats were trained to discriminate between positive and negative cues in pairs of odors, until they reached a phase of high capability to learn unfamiliar odors, using the same paradigm ("rule learning"). It has been reported that at 1-3 d after the acquisition of odor-discrimination rule learning, pyramidal neurons in the rat piriform cortex show enhanced excitability, due to a reduction in the spike-activated potassium current I(AHP), which is modulated by ACh.

View Article and Find Full Text PDF

1alpha,25-dihydroxyvitamin D(3) (1,25D(3)) is a powerful differentiation agent, which has potential for treatment of myeloid leukemias and other types of cancer, but the calcemia produced by pharmacologically active doses precludes the use of this agent in the clinic. We have shown that carnosic acid, the major rosemary polyphenol, enhances the differentiating and antiproliferative effects of low concentrations of 1,25D(3) in human myeloid leukemia cell lines (HL60, U937). Here we translated these findings to in vivo conditions using a syngeneic mouse leukemia tumor model.

View Article and Find Full Text PDF