Publications by authors named "Hagan Bayley"

The poor survival of ovarian cancer patients is linked to their high likelihood of relapse. In spite of full apparent macroscopic clearance, tumor recurrences arise from cells that are resistant to primary chemotherapy in the form of minimal residual disease (MRD). MRD exhibits distinct molecular drivers from bulk cancer and therefore necessitates alternative therapeutic strategies.

View Article and Find Full Text PDF

Nanoscale photoswitchable proteins could facilitate precise spatiotemporal control of transmembrane communication and support studies in synthetic biology, neuroscience and bioelectronics. Here, through covalent modification of the α-haemolysin protein pore with arylazopyrazole photoswitches, we produced 'photopores' that transition between iontronic resistor and diode modes in response to irradiation at orthogonal wavelengths. In the diode mode, a low-leak OFF-state nanopore exhibits a reversible increase in unitary conductance of more than 20-fold upon irradiation at 365 nm.

View Article and Find Full Text PDF
Article Synopsis
  • * The researchers have created a microscale soft flexible lithium-ion droplet battery (LiDB) made from biocompatible silk hydrogel that shows promise in biocompatibility, biodegradability, and high energy capacity.
  • * The LiDB has practical applications, such as powering molecule movement between synthetic cells and assisting in heart defibrillation and pacing, and can also serve as a mobile energy courier thanks to integrated magnetic particles.
View Article and Find Full Text PDF

Hydrogel iontronic devices can emulate biological functions and communicate with living matter. But the fabrication of miniature, soft iontronic devices according to modular designs has not been achieved. In this work, we report the use of surfactant-supported assembly of freestanding microscale hydrogel droplets to construct various iontronic modules, circuits, and biointerfaces.

View Article and Find Full Text PDF

The detection and mapping of protein phosphorylation sites are essential for understanding the mechanisms of various cellular processes and for identifying targets for drug development. The study of biopolymers at the single-molecule level has been revolutionized by nanopore technology. In this study, we detect protein phosphorylation within long polypeptides (>700 amino acids), after the attachment of binders that interact with phosphate monoesters; electro-osmosis is used to drive the tagged chains through engineered protein nanopores.

View Article and Find Full Text PDF

Enzyme-enabled biobatteries are promising green options to power the next-generation of bioelectronics and implantable medical devices. However, existing power sources based on enzymatic biofuel chemistry exhibit limited scale-down feasibility due to the solid and bulky battery structures. Therefore, miniature and soft alternatives are needed for integration with implants and tissues.

View Article and Find Full Text PDF

Pores containing molecular adapters provide internal selective binding sites, thereby allowing the stochastic sensing of analytes. Herein, we demonstrate that semiaza-bambusuril (BU) acts as a non-covalent molecular adapter when lodged within the lumen of the wild-type α-hemolysin (WT-αHL) protein pore. Because the bambusurils are recognized as anion receptors, the anion binding site within the adapter-nanopore complex allows the detection of chloride anions, thus converting a non-selective pore into an anion sensor.

View Article and Find Full Text PDF

We previously reported a molecular hopper, which makes sub-nanometer steps by thiol-disulfide interchange along a track with cysteine footholds within a protein nanopore. Here we optimize the hopping rate (ca. 0.

View Article and Find Full Text PDF

Engineering human tissue with diverse cell types and architectures remains challenging. The cerebral cortex, which has a layered cellular architecture composed of layer-specific neurons organised into vertical columns, delivers higher cognition through intricately wired neural circuits. However, current tissue engineering approaches cannot produce such structures.

View Article and Find Full Text PDF

Bio-integrated devices need power sources to operate. Despite widely used technologies that can provide power to large-scale targets, such as wired energy supplies from batteries or wireless energy transduction, a need to efficiently stimulate cells and tissues on the microscale is still pressing. The ideal miniaturized power source should be biocompatible, mechanically flexible and able to generate an ionic current for biological stimulation, instead of using electron flow as in conventional electronic devices.

View Article and Find Full Text PDF

Means to analyse cellular proteins and their millions of variants at the single-molecule level would uncover substantial information previously unknown to biology. Nanopore technology, which underpins long-read DNA and RNA sequencing, holds potential for full-length proteoform identification. We use electro-osmosis in an engineered charge-selective nanopore for the non-enzymatic capture, unfolding and translocation of individual polypeptides of more than 1,200 residues.

View Article and Find Full Text PDF

We previously reported a molecular hopper, which makes sub-nanometer steps by thiol-disulfide interchange along a track with cysteine footholds within a protein nanopore. Here we optimize the hopping rate (ca. 0.

View Article and Find Full Text PDF

We describe the development of a high-throughput bioprinted colorectal cancer (CRC) spheroid platform with high levels of automation, information content, and low cell number requirement. This is achieved via the formulation of a hydrogel bioink with a compressive Young's modulus that is commensurate with that of colonic tissue (1-3 kPa), which supports exponential growth of spheroids from a wide range of CRC cell lines. The resulting spheroids display tight cell-cell junctions, bioink matrix-cell interactions and necrotic hypoxic cores.

View Article and Find Full Text PDF

Inspired by the biological processes of molecular recognition and transportation across membranes, nanopore techniques have evolved in recent decades as ultrasensitive analytical tools for individual molecules. In particular, nanopore-based single-molecule DNA/RNA sequencing has advanced genomic and transcriptomic research due to the portability, lower costs and long reads of these methods. Nanopore applications, however, extend far beyond nucleic acid sequencing.

View Article and Find Full Text PDF

Bioelectronic devices that are tetherless and soft are promising developments in medicine, robotics and chemical computing. Here, we describe bioinspired synthetic neurons, composed entirely of soft, flexible biomaterials, capable of rapid electrochemical signal transmission over centimetre distances. Like natural cells, our synthetic neurons release neurotransmitters from their terminals, which initiate downstream reactions.

View Article and Find Full Text PDF

The outer membrane (OM) of gram-negative bacteria is highly asymmetric. The outer leaflet comprises lipopolysaccharides (LPS) and the inner leaflet phospholipids. Here, it is shown that the outer membrane lipid bilayer (OMLB) of Escherichia coli can be reconstructed as a droplet interface bilayer (DIB), which separates two aqueous droplets in oil.

View Article and Find Full Text PDF

A key goal of bottom-up synthetic biology is to construct cell- and tissue-like structures. Underpinning cellular life is the ability to process several external chemical signals, often in parallel. Until now, cell- and tissue-like structures have been constructed with no more than one signaling pathway.

View Article and Find Full Text PDF

The stepwise movement of a single biopolymer strand through a nanoscopic detector for the sequential identification of its building blocks offers a universal means for single-molecule sequencing. This principle has been implemented in portable sequencers that use enzymes to move DNA or RNA through hundreds of individual nanopore detectors positioned in an array. Nevertheless, its application to the sequencing of other biopolymers, including polypeptides and polysaccharides, has not progressed because suitable enzymes are lacking.

View Article and Find Full Text PDF

The design of peptides that assemble in membranes to form functional ion channels is challenging. Specifically, hydrophobic interactions must be designed between the peptides and at the peptide-lipid interfaces simultaneously. Here, we take a multi-step approach towards this problem.

View Article and Find Full Text PDF

Bacteria often live in diverse communities where the spatial arrangement of strains and species is considered critical for their ecology. However, a test of this hypothesis requires manipulation at the fine scales at which spatial structure naturally occurs. Here we develop a droplet-based printing method to arrange bacterial genotypes across a sub-millimetre array.

View Article and Find Full Text PDF

Nanopore enzymology is a powerful single-molecule technique for the label-free study of enzymes using engineered protein nanopore sensors. The technique has been applied to protein kinases, where it has enabled the full repertoire of kinase function to be observed, including: kinetics of substrate binding and dissociation, product binding and dissociation, nucleotide binding, and reversible phosphorylation. Further, minor modifications enable the screening of type I kinase inhibitors and the determination of inhibition constants in a facile and label-free manner.

View Article and Find Full Text PDF

Single-channel planar lipid bilayer (PLB) recording of bacterial porins has revealed molecular details of transport across the outer membrane of Gram-negative bacteria, including antibiotic permeation and protein translocation. To explore directional transport processes across cellular membranes, the orientation of porins or other pore-forming proteins must be established in a lipid bilayer prior to experimentation. Here, we describe a direct method for determining the orientation of porins in a PLB-with a focus on E.

View Article and Find Full Text PDF

Trimeric porins in the outer membrane (OM) of Gram-negative bacteria are the conduits by which nutrients and antibiotics diffuse passively into cells. The narrow gateways that porins form in the OM are also exploited by bacteriocins to translocate into cells by a poorly understood process. Here, using single-channel electrical recording in planar lipid bilayers in conjunction with protein engineering, we explicate the mechanism by which the intrinsically unstructured N-terminal translocation domain (IUTD) of the endonuclease bacteriocin ColE9 is imported passively across the OM through OmpF.

View Article and Find Full Text PDF

We report a single-molecule mechanistic investigation into 2-cyanobenzothiazole (CBT) chemistry within a protein nanoreactor. When simple thiols reacted reversibly with CBT, the thioimidate monoadduct was approximately 80-fold longer-lived than the tetrahedral bisadduct, with important implications for the design of molecular walkers. Irreversible condensation between CBT derivatives and N-terminal cysteine residues has been established as a biocompatible reaction for site-selective biomolecular labeling and imaging.

View Article and Find Full Text PDF

Current understanding of human brain development is rudimentary due to suboptimal in vitro and animal models. In particular, how initial cell positions impact subsequent human cortical development is unclear because experimental spatial control of cortical cell arrangement is technically challenging. 3D cell printing provides a rapid customized approach for patterning.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionrt5h27n25l0336qj389164mqcsqv7vs0): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once