The honey bee queen is essential for colony function, laying hundreds of eggs daily and determining the colony's genetic composition. Beekeepers cultivate and trade queens to enhance colony health and productivity. Despite its significance, artificial queen rearing in foster queenless colonies has remained largely unchanged for over a century, offering limited control over the environmental conditions influencing larval development.
View Article and Find Full Text PDFJuvenile hormone (JH) regulates developmental and physiological processes in insects. In bumble bees, the hormone acts as a gonadotropin that mediates ovary development, but the exact physiological pathways involved in ovary activation and subsequent egg laying are poorly understood. In this study, we examine how queen hibernation state, caste, and species impact the gonadotropic effect of JH in bumble bee queens through methoprene (JH analogue) application.
View Article and Find Full Text PDFHoney bee queens show extreme fecundity, commonly laying more than a thousand eggs in a single day. It has proven challenging to study the temporal organization of egg-laying behavior because queens are typically active around the clock in the dark cavity of a densely populated nest. To contend with this challenge, we developed two novel methods allowing detailed monitoring of queen activity and egg laying.
View Article and Find Full Text PDFJuvenile hormone (JH) is a modulator of many physiological transitions in insects, including molting, metamorphosis, diapause, and reproduction. These processes often include metabolic changes. Here we show that JH accelerates metabolic rate in bumble bees (Bombus terrestris).
View Article and Find Full Text PDFGonadotropic hormones coordinate processes in diverse tissues regulating animal reproductive physiology and behavior. Juvenile hormone (JH) is the ancient and most common gonadotropin in insects, but not in advanced eusocial honey bees and some ants. To start probing the evolutionary basis of this change, we combined endocrine manipulations, transcriptomics, and behavioral analyses to study JH regulated processes in a bumble bee showing a relatively simple level of eusociality.
View Article and Find Full Text PDFColonies of the bumblebee Bombus terrestris are characterized by wide phenotypic variability among genetically similar full-sister workers, suggesting a major role for epigenetic processes. Here, we report a high level of ADAR-mediated RNA editing in the bumblebee, despite the lack of an ADAR1-homolog. We identify 1.
View Article and Find Full Text PDFHoney bee populations have been declining precipitously over the past decade, and multiple causative factors have been identified. Recent research indicates that these frequently co-occurring stressors interact, often in unpredictable ways, therefore it has become important to develop robust methods to assess their effects both in isolation and in combination. Most such efforts focus on honey bee workers, but the state of a colony also depends on the health and productivity of its queen.
View Article and Find Full Text PDFSocial interactions can be divided into two categories, affiliative and agonistic. How neurogenomic responses reflect these opposing valences is a central question in the biological embedding of experience. To address this question, we exposed honey bees to a queen larva, which evokes nursing, an affiliative alloparenting interaction, and measured the transcriptomic response of the mushroom body brain region at different times after exposure.
View Article and Find Full Text PDFSocial challenges like territorial intrusions evoke behavioral responses in widely diverging species. Recent work has showed that evolutionary "toolkits"-genes and modules with lineage-specific variations but deep conservation of function-participate in the behavioral response to social challenge. Here, we develop a multispecies computational-experimental approach to characterize such a toolkit at a systems level.
View Article and Find Full Text PDFE. O. Wilson proposed in that similarities between human and animal societies reflect common mechanistic and evolutionary roots.
View Article and Find Full Text PDFA hallmark of insect societies is a division of labor among workers specializing in different tasks. In bumblebees the division of labor is related to body size; relatively small workers are more likely to stay inside the nest and tend ("nurse") brood, whereas their larger sisters are more likely to forage. Despite their ecological and economic importance, very little is known about the endocrine regulation of division of labor in bumblebees.
View Article and Find Full Text PDFCare of offspring is a form of affiliative behavior that is fundamental to studies of animal social behavior. Insects do not figure prominently in this topic because Drosophila melanogaster and other traditional models show little if any paternal or maternal care. However, the eusocial honey bee exhibits cooperative brood care with larvae receiving intense and continuous care from their adult sisters, but this behavior has not been well studied because a robust quantitative assay does not exist.
View Article and Find Full Text PDFThe evolution of advanced sociality in bees is associated with apparent modifications in juvenile hormone (JH) signaling. By contrast to most insects in which JH is a gonadotropin regulating female fertility, in the highly eusocial honey bee (Apis mellifera) JH has lost its gonadotrophic function in adult females, and instead regulates age-related division of labor among worker bees. In order to shed light on the evolution of JH signaling in bees we performed allatectomy and replacement therapies to manipulate JH levels in workers of the "primitively eusocial" bumblebee Bombus terrestris.
View Article and Find Full Text PDFBombus terrestris colonies go through two major phases: the "pre-competition phase" in which the queen is the sole reproducer and aggression is rare, and the "competition phase" in which workers aggressively compete over reproduction. Conflicts over reproduction are partially regulated by a group of octyl esters that are produced in Dufour's gland of reproductively subordinate workers and protect them from being aggressed. However, workers possess octyl esters even before overt aggression occurs, raising the question of why produce the ester-signal before it is functionally necessary? In most insect societies, foragers show reduced aggression and low dominance rank.
View Article and Find Full Text PDFChronic neuropathic pain is affected by specifics of the precipitating neural pathology, psychosocial factors, and by genetic predisposition. Little is known about the identity of predisposing genes. Using an integrative approach, we discovered that CACNG2 significantly affects susceptibility to chronic pain following nerve injury.
View Article and Find Full Text PDFBackground: Regulation of worker behavior by dominant queens or workers is a hallmark of insect societies, but the underlying molecular mechanisms and their evolutionary conservation are not well understood. Honey bee and bumble bee colonies consist of a single reproductive queen and facultatively sterile workers. The queens' influences on the workers are mediated largely via inhibition of juvenile hormone titers, which affect division of labor in honey bees and worker reproduction in bumble bees.
View Article and Find Full Text PDFWe aimed to locate a chronic pain-associated QTL in the rat (Rattus norvegicus) based on previous findings of a QTL (pain1) on chromosome 15 of the mouse (Mus musculus). The work was based on rat selection lines HA (high autotomy) and LA (low autotomy) which show a contrasting pain phenotype in response to nerve injury in the neuroma model of neuropathic pain. An F(2) segregating population was generated from HA and LA animals.
View Article and Find Full Text PDF