Pharmaceutics
January 2023
This study aimed at developing the microwave-treated, physically cross-linked polymer blend film, optimizing the microwave treatment time, and testing for physicochemical attributes and wound healing potential in diabetic animals. Microwave-treated and untreated films were prepared by the solution casting method and characterized for various attributes required by a wound healing platform. The optimized formulation was tested for skin regeneration potential in the diabetes-induced open-incision animal model.
View Article and Find Full Text PDFObjective: This project was aimed at formulating a novel nanoemulsion system and evaluating it for open incision wound healing in diabetic animals.
Methods: The nanoemulsions were characterized for droplet size and surface charge, drug content, antioxidant and antimicrobial profiling, and wound healing potential in diabetic animals. The skin samples excised were also analyzed for histology, mechanical strength, and vibrational and thermal analysis.
This project purposes to develop chitosan and sodium alginate-based hydrogel membranes loaded with curcumin through microwave-based physical cross-linking technique and its evaluation for wound healing potential. For the purpose, curcumin-loaded chitosan and sodium alginate membranes were developed using microwave at fixed frequency of 2450 MHz, power 350 W for 60 s, and tested for their physicochemical attributes like swelling, erosion, surface morphology, drug content, and in vitro drug release. The membranes were also subjected to tensile strength and vibrational and thermal analysis followed by testing in vivo on animals.
View Article and Find Full Text PDFThis study reports microwave assisted physically cross-linked sodium alginate and pectin film and their testing in combination with modified chitosan-curcumin nanoparticles for skin tissue regeneration following 2nd degree burn wound. Film was formulated by solution casting method and physically cross-linked using microwave irradiation at frequency of 2450 MHz, power 750 Watt for different time intervals for optimization. The optimized formulation was analyzed for various physiochemical attributes.
View Article and Find Full Text PDFIntroduction: The current work aimed to formulate a novel chitosan-based finasteride nanosystem (FNS-NS) for skin delivery to optimize the drug availability in skin for a longer time and enhance ex vivo performance of finasteride against androgenic alopecia.
Methods: Both undecorated and chitosan decorated FNS-NSs were synthesized by a high energy emulsification technique. All the prepared nanosystems were further subjected to physicochemical characterizations like pH, viscosity, encapsulation efficiency, surface morphology and in vitro drug release behavior.
Improved physicochemical properties of chitosan-curcumin nanoparticulate carriers using microwave technology for skin burn wound application are reported. The microwave modified low molecular weight chitosan variant was used for nanoparticle formulation by ionic gelation method nanoparticles analyzed for their physicochemical properties. The antimicrobial activity against and cultures, cytotoxicity and cell migration using human dermal fibroblasts-an adult cell line-were studied.
View Article and Find Full Text PDF