This study presents an analysis and evaluation of gait asymmetry (GA) based on the temporal gait parameters identified using a portable gait event detection system, placed on the lateral side of the shank of both lower extremities of the participants. Assessment of GA was carried out with seven control subjects (CS), one transfemoral amputee (TFA) and one transtibial amputee (TTA) while walking at different speeds on overground (OG) and treadmill (TM). Gait cycle duration (GCD), stance phase duration (SPD), swing phase duration (SwPD), and the sub-phases of the gait cycle (GC) such as Loading-Response (LR), Foot-Flat (FF), and Push-Off (PO), Swing-1 (SW-1) and Swing-2 (SW-2) were evaluated.
View Article and Find Full Text PDFA hip joint fracture includes a break in the thigh (femur) or coxa bone near the pelvis. During fracture healing, stability and weight bearing by the affected limb are key indicators to measure patients' improvement. Conventionally, the rehabilitation effectiveness is monitored through clinical examinations, patients' feedback, and few studies also reported instrumented gait evaluations.
View Article and Find Full Text PDFThe aim of the prosthetic devices is to replicate the able-bodied angle-torque profile of a healthy human during locomotion. A lightweight and energy-efficient ankle joint is able to lower the actuator peak power and/or energy consumption per gait cycle, while adequately fulfilling the profile matching constraints. This study presents the design optimization of the prosthetic ankle joint containing an elastic element and actuator coupled with a rigid triangular part.
View Article and Find Full Text PDFWearable ankle-foot orthoses (AFO) are widely prescribed clinically; however, their effect on balance control during ramp ascent/descent walk remains unknown. This study evaluates walking stability on a ramp during weight loading and unloading transitions of the stance phase with the effect of an adjustable AFO. An AFO is tuned firstly by tuning dorsiflexion only and then combining dorsi-plantarflexion adjustments.
View Article and Find Full Text PDFBackground: The relationship between the functional loading rate and heel velocities was assessed in an active unilateral transfemoral amputee (UTFA) for adaptation to six different commercial prosthetic knees.
Objective: To Investigate the short-term process of adaptability for UTFA for two types of prosthetic knees were evaluated, based on the correlation between heel vertical velocity and transient loading rate.
Methods: The loading rate was calculated from the slope of ground reaction forces (GRF) and the corresponding time.