Publications by authors named "Haffner R"

Aims: Conventional patient-reported surveys, used for patients undergoing total hip arthroplasty (THA), are limited by subjectivity and recall bias. Objective functional evaluation, such as gait analysis, to delineate a patient's functional capacity and customize surgical interventions, may address these shortcomings. This systematic review endeavours to investigate the application of objective functional assessments in appraising individuals undergoing THA.

View Article and Find Full Text PDF

The biomedical research community addresses reproducibility challenges in animal studies through standardized nomenclature, improved experimental design, transparent reporting, data sharing, and centralized repositories. The ARRIVE guidelines outline documentation standards for laboratory animals in experiments, but genetic information is often incomplete. To remedy this, we propose the Laboratory Animal Genetic Reporting (LAG-R) framework.

View Article and Find Full Text PDF

Background: The purpose of this study was to evaluate postoperative outcomes at minimum 5-year follow-up in patients following unicompartmental knee arthroplasty (UKA) compared to a matched cohort of total knee arthroplasty (TKA) patients.

Methods: Patients who had primarily medial compartment osteoarthritis (OA) who met criteria for medial UKA underwent TKA or medial UKA between 2014 and 2015 at a single institution, matched for age, sex, and body mass index. There were 127 UKAs in 120 patients and 118 TKAs in 116 patients included with minimum 5-year follow-up (range, 6 to 8).

View Article and Find Full Text PDF

The production of I-131 for use in medicine can be accomplished by the neutron irradiation of tellurium, typically in the form of TeO. Unfortunately, the literature contains conflicting data concerning the I-131 yield as a function of neutron fluence, target mass, irradiation time and post-irradiation decay. In this work, the activity of the I-131 was determined using calculations and experimental verifications based on the interplay of these variables.

View Article and Find Full Text PDF

Over the past 25 years, genetically engineered mouse models have become an integral and invaluable research tool to develop our understanding of mammalian physiology and pathology. This unit describes methods for generating transgenic mice, focusing on reporter animals relevant to chemokine receptor and ligand expression. Specifically, we describe the use of bacterial artificial chromosome (BAC) engineering and embryonic stem cell manipulation to generate "knock in" and transgenic mice.

View Article and Find Full Text PDF

The importance of placental circulation is exemplified by the correlation of placental size and blood flow with fetal weight and survival during normal and compromised human pregnancies in such conditions as preeclampsia and intrauterine growth restriction (IUGR). Using noninvasive magnetic resonance imaging, we evaluated the role of PKBalpha/AKT1, a major mediator of angiogenesis, on placental vascular function. PKBalpha/AKT1 deficiency reduced maternal blood volume fraction without affecting the integrity of the fetomaternal blood barrier.

View Article and Find Full Text PDF

The mammalian NIMA-related kinases (Neks) are commonly referred to as mitotic kinases, although a definitive in vivo verification of this definition is largely missing. Reduction in the activity of Nek7 or its close paralog, Nek6, has previously been shown to arrest cells in mitosis, mainly at metaphase. In this study, we investigate the developmental and cellular roles of Nek7 kinase through the generation and analysis of Nek7-deficient mice.

View Article and Find Full Text PDF

Knockout of caspase-8, a cysteine protease that participates in the signaling for cell death by receptors of the TNF/nerve growth factor family, is lethal to mice in utero. To explore tissue-specific roles of this enzyme, we established its conditional knockout using the Cre/loxP recombination system. Consistent with its role in cell death induction, deletion of caspase-8 in hepatocytes protected them from Fas-induced caspase activation and death.

View Article and Find Full Text PDF

The involvement of p53 in regulating diverse cellular processes dictates that it must respond to multiple signaling mechanisms, thus coordinating the response to various "stress conditions." Genotoxic stress has served as a paradigm to dissect the transactivation-dependent branch of the pathway by which p53 can induce growth arrest. Alternate mechanisms have been invoked to explain transactivation-independent effects of p53, especially in the context of apoptosis.

View Article and Find Full Text PDF

The p53 tumor suppressor protein is a sequence-specific transcriptional activator of target genes. Exposure of cells to DNA damage results in accumulation of biochemically active p53, with consequent activation of p53-responsive promoters. In order to study how the transcriptional activity of the p53 protein is regulated in vivo, a transgenic mouse strain was generated.

View Article and Find Full Text PDF

Previously we reported that neu differentiation factor (NDF)/heregulin (HRG) elevates tyrosine phosphorylation of its receptors erbB-3, erbB-4, and erbB-2 (through heterodimer formation). We also showed that both NDF/HRG and antibodies to erbB-2 can arrest growth and induce differentiation in breast cancer cells. In this study, we report on the mechanism of NDF/HRG-induced cellular effects.

View Article and Find Full Text PDF

The E2F DNA binding activity consists of a heterodimer between E2F and DP family proteins, and these interactions are required for association of E2F proteins with pRb and the pRb-related proteins p107 and p130, which modulate E2F transcriptional activities. E2F-1 expression is sufficient to release fibroblasts from G0 and induce entry into S phase, yet it also initiates apoptosis. To investigate the mechanisms of E2F-induced apoptosis, we utilized interleukin-3 (IL-3)-dependent 32D.

View Article and Find Full Text PDF

Direct interactions between the genes that regulate development and those which regulate the cell cycle would provide a mechanism by which numerous biological events could be better understood. We have identified a direct role for PAX5 in the control of p53 transcription. In primary human diffuse astrocytomas, PAX5 expression inversely correlated with p53 expression.

View Article and Find Full Text PDF

Over the past year, insights have been made into the biochemistry and biological effects of p53. The high-resolution three-dimensional structure has been determined for the central core and carboxy-terminal domain of the protein, important p53 target genes (such as WAF1) have been identified, and insight has been gained into the relationship between p53-mediated growth arrest and apoptosis.

View Article and Find Full Text PDF

Overexpression of wild-type p53 in p53-deficient leukemic cells induces apoptosis, which can be inhibited by hematopoietic survival factors. This suggests that p53 may contribute to survival factor dependence. To assess the role of wild-type p53 in mediating apoptosis following survival factor withdrawal, we interfered with endogenous p53 activity in interleukin-3 (IL-3)-dependent cells.

View Article and Find Full Text PDF

CdxA is a homeobox gene of the caudal type that was previously shown to be expressed in the endoderm-derived gut epithelium during early embryogenesis. Expression of the CDXA protein was studied during intestine morphogenesis from stage 11 (13 somites) to adulthood in the chicken. The CDXA protein can be detected during all stages of gut closure, from stage 11 to 5 days of incubation, and is mainly localized to the intestinal portals, the region where the splanchnopleure is undergoing closure.

View Article and Find Full Text PDF

The chicken homebox containing gene, CdxA (formerly CHox-cad), was previously shown to be expressed during gastrulation. Localization of CdxA transcripts by in situ hybridization to tissue sections revealed that, during gastrulation, expression of this gene exhibits a posterior localization along the primitive streak. The transcripts are localized to epiblast cells in the vicinity of the primitive streak, to cells of the primitive streak itself and in the definitive endoderm as it replaces the hypoblast.

View Article and Find Full Text PDF

We have recently characterized a 95 kDa protein, p95, which exhibits enhanced binding to temperature-sensitive p53 (ts-p53) when cells are shifted down to 32.5 degrees C, a temperature at which ts-p53 possesses wild-type (wt)-like activities. In the present study we show that p95 is a product of the mdm2 putative proto-oncogene.

View Article and Find Full Text PDF