Publications by authors named "HaeuSSler M"

To elucidate aging-associated cellular population dynamics, we present PanSci, a single-cell transcriptome atlas profiling >20 million cells from 623 mouse tissues across different life stages, sexes, and genotypes. This comprehensive dataset reveals >3000 different cellular states and >200 aging-associated cell populations. Our panoramic analysis uncovered organ-, lineage-, and sex-specific shifts in cellular dynamics during life-span progression.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system. Inflammation is gradually compartmentalized and restricted to specific tissue niches such as the lesion rim. However, the precise cell type composition of such niches, their interactions and changes between chronic active and inactive stages are incompletely understood.

View Article and Find Full Text PDF

The UCSC Genome Browser (https://genome.ucsc.edu) is a widely utilized web-based tool for visualization and analysis of genomic data, encompassing over 4000 assemblies from diverse organisms.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines the roles of the hippocampus and prefrontal cortex in learning and cognition, focusing on their molecular development through innovative genomic techniques.
  • Researchers used over 53,000 single-nucleus profiles to analyze DNA methylation and chromatin conformation changes, finding that these processes occur at different times during development.
  • The findings reveal distinct chromatin interactions in neurons versus glial cells and identify specific genetic variants associated with schizophrenia, highlighting the potential of single-cell multi-omics in understanding brain development and neuropsychiatric disorders.
View Article and Find Full Text PDF

Our ability to generate sequencing data and assemble it into high quality complete genomes has rapidly advanced in recent years. These data promise to advance our understanding of organismal biology and answer longstanding evolutionary questions. Multiple genome alignment is a key tool in this quest.

View Article and Find Full Text PDF

Background: Patients with lissencephaly typically present with severe psychomotor retardation and drug-resistant seizures. The aim of this study was to characterize the epileptic phenotype in a genotypically and radiologically well-defined patient cohort and to evaluate the response to antiseizure medication (ASM). Therefore, we retrospectively evaluated 47 patients of five genetic forms (, , , , ) using family questionnaires, standardized neuropediatric assessments, and patients' medical reports.

View Article and Find Full Text PDF
Article Synopsis
  • Inclusion body myositis (IBM) is a common inflammatory muscle disease in older adults that currently has no effective treatment and presents a mix of inflammatory and degenerative characteristics.
  • Researchers used advanced sequencing techniques to analyze muscle biopsies from IBM patients, finding unique patterns of cellular changes compared to other muscle diseases and non-inflammatory muscles.
  • Key findings reveal a loss of specific muscle fibers, increased immune cell presence, and markers of cell stress and protein degradation, highlighting potential mechanisms behind muscle degeneration in IBM and pointing to vulnerabilities in type 2 muscle fibers.
View Article and Find Full Text PDF

To elucidate the aging-associated cellular population dynamics throughout the body, here we present PanSci, a single-cell transcriptome atlas profiling over 20 million cells from 623 mouse tissue samples, encompassing a range of organs across different life stages, sexes, and genotypes. This comprehensive dataset allowed us to identify more than 3,000 unique cellular states and catalog over 200 distinct aging-associated cell populations experiencing significant depletion or expansion. Our panoramic analysis uncovered temporally structured, organ- and lineage-specific shifts of cellular dynamics during lifespan progression.

View Article and Find Full Text PDF
Article Synopsis
  • Noncoding DNA helps scientists understand how genes work and how they relate to diseases in humans.
  • Researchers studied the DNA of many primates to find specific regulatory parts that are important for gene regulation.
  • They discovered a lot of these regulatory elements in humans that are different from those in other mammals, which can help explain human traits and health issues.
View Article and Find Full Text PDF

The UCSC Genome Browser (https://genome.ucsc.edu) is a web-based genomic visualization and analysis tool that serves data to over 7,000 distinct users per day worldwide.

View Article and Find Full Text PDF

Duplication 15q (dup15q) syndrome is the most common genetic cause of autism spectrum disorder (ASD). Due to a higher genetic and phenotypic homogeneity compared to idiopathic autism, dup15q syndrome provides a well-defined setting to investigate ASD mechanisms. Previous bulk gene expression studies identified shared molecular changes in ASD.

View Article and Find Full Text PDF

Interactive graphical genome browsers are essential tools in genomics, but they do not contain all the recent genome assemblies. We create Genome Archive (GenArk) collection of UCSC Genome Browsers from NCBI assemblies. Built on our established track hub system, this enables fast visualization of annotations.

View Article and Find Full Text PDF

Human brain development requires the generation of hundreds of diverse cell types, a process targeted by recent single-cell transcriptomic profiling efforts. Through a meta-analysis of seven of these published datasets, we have generated 225 meta-modules - gene co-expression networks that can describe mechanisms underlying cortical development. Several meta-modules have potential roles in both establishing and refining cortical cell type identities, and we validated their spatiotemporal expression in primary human cortical tissues.

View Article and Find Full Text PDF

Interactive graphical genome browsers are essential tools for biologists working with DNA sequences. Although tens of thousands of new genome assemblies have become available over the last decade, accessibility is limited by the work involved in manually creating browsers and curating annotations. The results can push the limits of data storage infrastructure.

View Article and Find Full Text PDF

Emerging spatial technologies, including spatial transcriptomics and spatial epigenomics, are becoming powerful tools for profiling of cellular states in the tissue context. However, current methods capture only one layer of omics information at a time, precluding the possibility of examining the mechanistic relationship across the central dogma of molecular biology. Here, we present two technologies for spatially resolved, genome-wide, joint profiling of the epigenome and transcriptome by cosequencing chromatin accessibility and gene expression, or histone modifications (H3K27me3, H3K27ac or H3K4me3) and gene expression on the same tissue section at near-single-cell resolution.

View Article and Find Full Text PDF

The UCSC Genome Browser (https://genome.ucsc.edu) is an omics data consolidator, graphical viewer, and general bioinformatics resource that continues to serve the community as it enters its 23rd year.

View Article and Find Full Text PDF

High-throughput experimental platforms have revolutionized the ability to profile biochemical and functional properties of biological sequences such as DNA, RNA and proteins. By collating several data modalities with customizable tracks rendered using intuitive visualizations, genome browsers enable an interactive and interpretable exploration of diverse types of genome profiling experiments and derived annotations. However, existing genome browser tracks are not well suited for intuitive visualization of high-resolution DNA sequence features such as transcription factor motifs.

View Article and Find Full Text PDF

Interactions between angiogenesis and neurogenesis regulate embryonic brain development. However, a comprehensive understanding of the stages of vascular cell maturation is lacking, especially in the prenatal human brain. Using fluorescence-activated cell sorting, single-cell transcriptomics, and histological and ultrastructural analyses, we show that an ensemble of endothelial and mural cell subtypes tile the brain vasculature during the second trimester.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a multifocal and progressive inflammatory disease of the central nervous system (CNS). However, the compartmentalized pathology of the disease affecting various anatomical regions including gray and white matter and lack of appropriate disease models impede understanding of the disease. Utilizing single-nucleus RNA-sequencing and multiplex spatial RNA mapping, we generated an integrated transcriptomic map comprising leukocortical, cerebellar and spinal cord areas in normal and MS tissues that captures regional subtype diversity of various cell types with an emphasis on astrocytes and oligodendrocytes.

View Article and Find Full Text PDF

The UCSC Genome Browser has been an important tool for genomics and clinical genetics since the sequence of the human genome was first released in 2000. As it has grown in scope to display more types of data it has also grown more complicated. The data, which are dispersed at many locations worldwide, are collected into one view on the Browser, where the graphical interface presents the data in one location.

View Article and Find Full Text PDF

Background: Patients with dyskinetic cerebral palsy are often severely impaired with limited treatment options. The effects of deep brain stimulation (DBS) are less pronounced than those in inherited dystonia but can be associated with favorable quality of life outcomes even in patients without changes in dystonia severity.

Objective: The aim is to assess DBS effects in pediatric patients with pharmacorefractory dyskinetic cerebral palsy with focus on quality of life.

View Article and Find Full Text PDF

The UCSC Genome Browser, https://genome.ucsc.edu, is a graphical viewer for exploring genome annotations.

View Article and Find Full Text PDF

During mammalian development, differences in chromatin state coincide with cellular differentiation and reflect changes in the gene regulatory landscape. In the developing brain, cell fate specification and topographic identity are important for defining cell identity and confer selective vulnerabilities to neurodevelopmental disorders. Here, to identify cell-type-specific chromatin accessibility patterns in the developing human brain, we used a single-cell assay for transposase accessibility by sequencing (scATAC-seq) in primary tissue samples from the human forebrain.

View Article and Find Full Text PDF

Microglia are resident macrophages in the brain that emerge in early development and respond to the local environment by altering their molecular and phenotypic states. Fundamental questions about microglia diversity and function during development remain unanswered because we lack experimental strategies to interrogate their interactions with other cell types and responses to perturbations ex vivo. We compared human microglia states across culture models, including cultured primary and pluripotent stem cell-derived microglia.

View Article and Find Full Text PDF

Summary: As the use of single-cell technologies has grown, so has the need for tools to explore these large, complicated datasets. The UCSC Cell Browser is a tool that allows scientists to visualize gene expression and metadata annotation distribution throughout a single-cell dataset or multiple datasets.

Availability And Implementation: We provide the UCSC Cell Browser as a free website where scientists can explore a growing collection of single-cell datasets and a freely available python package for scientists to create stable, self-contained visualizations for their own single-cell datasets.

View Article and Find Full Text PDF