For rapid and effective hemostasis of uncontrollable bleeding, versatile hemostatic agents have been emerging. Among them, polyphenol-derived adhesives have attracted those hemostatic materials due to instantaneous formation of sticky barriers by robust interactions between the material and the serum proteins from wound. However, a critical challenge in such phenolic materials lies in long-term storage due to spontaneous oxidation under humid environments, leading to changes in hemostatic capability and adhesive strength.
View Article and Find Full Text PDFA critical challenge in many pharmaceutical fields is developing versatile adjuvant devices that can reduce the off-target delivery of therapeutic materials to target lesions. Herein, a biphasic hybrid fibrous system that can manipulate the spatial and temporal delivery of various therapeutic agents to target lesions by integrating multiple distinct systems and technologies such as fluffy coaxial electrospun polycaprolactone (PCL)/polystyrene (PS) fibers, cyclohexane-mediated leaching to remove PS layers selectively, amine display on PCL fibers, conjugation of naturally occurring adhesive gallol molecules onto hyaluronic acid (HA-g), and electrostatically complexing the aminated PCL fibers with the gallol-conjugated HA. In the context of "paintable" systems on target lesions, the resulting system is called a PAINT matrix (abbreviated according to the initial letter of its features: pastable, adhesive, injectable, nanofibrous, and tunable).
View Article and Find Full Text PDFThis study reports the concept of an "adaptive binder" to address the silicon anode challenge in Li-ion batteries. Binders exhibit adaptable capabilities upon gradual changes in the microenvironments surrounding silicon particles during anodic expansion-shrinkage cycles. Long, flexible binder chains are repositioned and reoriented upon the gradual formation of Si-micro-environments (Si-μ-env) during the early battery cycles.
View Article and Find Full Text PDFSpecial surface wettability attracts significant attention. In this study, dramatic differences in wettability are demonstrated for microparticles with the same chemical composition, SiO. One is natural silica prepared from the diatom, , and the other is synthetic silica.
View Article and Find Full Text PDFPolydopamine coating, the first material-independent surface chemistry, and its related methods significantly influence virtually all areas of material science and engineering. Functionalized surfaces of metal oxides, synthetic polymers, noble metals, and carbon materials by polydopamine and its related derivatives exhibit a variety of properties for cell culture, microfluidics, energy storage devices, superwettability, artificial photosynthesis, encapsulation, drug delivery, and numerous others. Unlike other articles, this review particularly focuses on the development of material science utilizing polydopamine and its derivatives coatings at the Korea Advanced Institute of Science and Technology for a decade.
View Article and Find Full Text PDFVarious methods have been developed in surface chemistry to control interface properties of a solid material. A selection rule among surface chemistries is compatibility between a surface functionalization tool and a target material. For example, alkanethiol deposition on noble metal surfaces, widely known as the formation of a self-assembled monolayer (SAM), cannot be performed on oxide material surfaces.
View Article and Find Full Text PDFFluorescent carbon dots have received considerable attention as a result of their accessibility and potential applications. Although several prior studies have demonstrated that nearly any organic compound can be converted into carbon dots by chemical carbonization processes, mechanisms explaining the formation of carbon dots still remain unclear. Herein, we propose a seed-growth mechanism of carbon dot formation facilitated by ferulic acid, a widespread and naturally occurring phenolic compound in the seeds of Ocimum basilicum (basil).
View Article and Find Full Text PDF