Two-dimensional (2D) allotropes of tellurium (Te), recently coined as tellurene, are currently an emerging topic of materials research due to the theoretically predicted exotic properties of Te in its ultrathin form and at the single atomic layer limit. However, a prerequisite for the production of such new and single elemental 2D materials is the development of simple and robust fabrication methods. In the present work, we report three different 2D superstructures of Te on Au(111) surfaces by following an alternative experimental deposition approach.
View Article and Find Full Text PDFJ Phys Condens Matter
October 2022
Individual magnetic transition metal dopants in a solid host usually exhibit relatively small spin excitation energies of a few meV. Using scanning tunneling microscopy and inelastic electron tunneling spectroscopy (IETS) techniques, we have observed a high spin excitation energy around 36 meV for an individual Co substitutional dopant in ultrathin NaCl films. In contrast, the Cr dopant in the NaCl film shows much lower spin excitation energy around 2.
View Article and Find Full Text PDFWe successfully identified native point defects that occur in BiTe crystals by combining high-resolution bias-dependent scanning tunneling microscopy and density functional theory based calculations. As-grown BiTe crystals contain vacancies, antisites, and interstitial defects that may result in bulk conductivity and therefore may change the insulating bulk character. Here, we demonstrate the interplay between the growth conditions and the density of different types of native near-surface defects.
View Article and Find Full Text PDFThe free-standing Au cluster has a unique tetrahedral shape and a large HOMO-LUMO (highest occupied molecular orbital-lowest unoccupied molecular orbital) gap of around 1.8 electron volts. The "magic" Au has been intensively used as a model system for understanding the catalytic and optical properties of gold nanoclusters.
View Article and Find Full Text PDFScanning tunneling microscopy and spectroscopy experiments under ultrahigh vacuum and low-temperature conditions have been performed on water-intercalated graphene on Pt(111). We find that the confined water layer, with a thickness around 0.35 nm, induces a strong hole doping in graphene, i.
View Article and Find Full Text PDFJ Phys Condens Matter
April 2019
Magnetic nanoparticles embedded oxide semiconductors are interesting candidates for spintronics in view of combining ferromagnetic (FM) and semiconducting properties. In this work, Co-ZnO and Co-VO nanocomposite thin films are synthesized by Co ion implantation in crystalline thin films. Magnetic orders vary with the implantation fluence in Co-ZnO, where superparamagnetic (SPM) order appears in the low-fluence films (2 × 10 and 4 × 10 ions cm) and FM order co-exists with the SPM phase in high-fluence films (1 × 10 ions cm).
View Article and Find Full Text PDFWe have examined the conductive properties of carbon nanotube based thin films, which were prepared via dispersion in water by non-covalent functionalization of the nanotubes with xylan, a type of hemicellulose. Measurements of low temperature conductivity, Kelvin probe force microscopy, and high frequency (THz) conductivity elucidated the intra-tube and inter-tube charge transport processes in this material. The measurements show excellent conductive properties of the as prepared thin films, with bulk conductivity up to 2000 S cm.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2017
The key steps of a transfer of two-dimensional (2D) materials are the delamination of the as-grown material from a growth substrate and the lamination of the 2D material on a target substrate. In state-of-the-art transfer experiments, these steps remain very challenging, and transfer variations often result in unreliable 2D material properties. Here, it is demonstrated that interfacial water can insert between graphene and its growth substrate despite the hydrophobic behavior of graphene.
View Article and Find Full Text PDFWe investigated the topological insulator (TI) BiTe in four different environments (ambient, ultra-high vacuum (UHV), nitrogen gas and organic solvent environment) using scanning probe microscopy (SPM) techniques. Upon prolonged exposure to ambient conditions and organic solvent environments the cleaved surface of the pristine BiTe is observed to be strongly modified during SPM measurements, while imaging of freshly cleaved BiTe in UHV and nitrogen gas shows considerably less changes of the BiTe surface. We conclude that the reduced surface stability upon exposure to ambient conditions is triggered by adsorption of molecular species from ambient, including HO, CO, etc which is verified by Auger electron spectroscopy.
View Article and Find Full Text PDFWe report on the adsorption of Te adatoms on Au(1 1 1), which are identified and investigated relying on scanning tunnelling microscopy, Auger electron spectroscopy, and density functional theory. The Te adatoms lift the 23 × √3 surface reconstruction of the Au(1 1 1) support and their organization is similar to that of previously reported chalcogen adatoms on Au(1 1 1), which are also known to lift the herringbone reconstruction and can adopt a (√3 × √3)R30° structure. The adatoms show strong interaction with the Au(1 1 1) surface, resulting in scattering and confinement of the Au surface state (SS) electrons near the Fermi level.
View Article and Find Full Text PDFDetermining the mechanism of charge transport through native DNA remains a challenge as different factors such as measuring conditions, molecule conformations, and choice of technique can significantly affect the final results. In this contribution, we have used a new approach to measure current flowing through isolated double-stranded DNA molecules, using fullerene groups to anchor the DNA to a gold substrate. Measurements were performed at room temperature in an inert environment using a conductive AFM technique.
View Article and Find Full Text PDFThe combination of lithography and ion implantation is demonstrated to be a suitable method to prepare lateral multilayers. A laterally, compositionally, and magnetically modulated microscale pattern consisting of alternating Co (1.6 µm wide) and Co-CoO (2.
View Article and Find Full Text PDFStacking faults are known as defective structures in crystalline materials that typically lower the structural quality of the material. Here, we show that a particular type of defect, that is, stacking fault tetrahedra (SFTs), exhibits pronounced quantized electronic behaviour, revealing a potential synthetic route to decoupled nanoparticles in metal films. We report on the electronic properties of SFTs that exist in Au(111) films, as evidenced by scanning tunnelling microscopy and confirmed by transmission electron microscopy.
View Article and Find Full Text PDFA theoretical and experimental study of the work function of few-layer graphene is reported. The influence of the number of layers on the work function is investigated in the presence of a substrate, a molecular dipole layer, and combinations of the two. The work function of few-layer graphene is almost independent of the number of layers with only a difference between monolayer and multilayer graphene of about 60 meV.
View Article and Find Full Text PDFWe probe the electron-phonon coupling for in situ engineered porphyrin-based magnetic molecular layers supported on weakly reactive surfaces. Using high-resolution scanning tunneling microscopy and spectroscopy at 4.5 K we show that the electronic and magnetic properties of the engineered molecules are the result of interplay between many-body spin-flip excitations and electron-phonon interactions.
View Article and Find Full Text PDFTopological insulators (TIs) are renowned for their exotic topological surface states (TSSs) that reside in the top atomic layers, and hence, detailed knowledge of the surface top atomic layers is of utmost importance. Here we present the remarkable morphology changes of Bi2Te3 surfaces, which have been freshly cleaved in air, upon subsequent systematic annealing in ultrahigh vacuum and the resulting effects on the local and area-averaging electronic properties of the surface states, which are investigated by combining scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS), and Auger electron spectroscopy (AES) experiments with density functional theory (DFT) calculations. Our findings demonstrate that the annealing induces the formation of a Bi bilayer atop the Bi2Te3 surface.
View Article and Find Full Text PDFAtomic-level substitutional doping can significantly tune the electronic properties of graphene. Using low-temperature scanning tunneling microscopy and spectroscopy, the atomic-scale crystalline structure of graphene grown on polycrystalline Cu, the distribution of nitrogen dopants and their effect on the electronic properties of graphene were investigated. Both the graphene sheet growth and nitrogen doping were performed using microwave plasma-enhanced chemical vapor deposition.
View Article and Find Full Text PDFSmall soluble species of amyloid-beta (Aβ) formed during early peptide aggregation stages are responsible for several neurotoxic mechanisms relevant to the pathology of Alzheimer's disease (AD), although their interaction with the neuronal membrane is not completely understood. This study quantifies the changes in the neuronal membrane elasticity induced by treatment with the two most common Aβ isoforms found in AD brains: Aβ40 and Aβ42. Using quantitative atomic force microscopy (AFM), we measured for the first time the static elastic modulus of living primary hippocampal neurons treated with pre-aggregated Aβ40 and Aβ42 soluble species.
View Article and Find Full Text PDFThe interplay between magnetocrystalline anisotropy and exchange bias is investigated in CoO/Co bilayer films, which are grown epitaxially on MgO (0 0 1), by magnetization reversal measurements based on the anisotropic magnetoresistance (AMR) effect. While an asymmetric magnetization reversal survives after training for cooling field (CF) along the hard axis, the magnetization reversal becomes symmetric and is dominated in both branches of the hysteresis loop by domain wall motion before and after training for CF along the easy axis. When performing an in-plane hysteresis loop perpendicular to the CF, the hysteresis loop along the easy axis becomes asymmetric: magnetization rotation dominates in the ascending branch, while there is a larger contribution of domain wall motion in the descending branch.
View Article and Find Full Text PDFMembranes and their size-selective filtering properties are universal in nature and their behavior is exploited to design artificial membranes suited for, e.g., molecule or nanoparticle filtering and separation.
View Article and Find Full Text PDFNanoparticles of different materials are already in use for many applications. In some applications, these nanoparticles need to be deposited on a substrate in a fast and reproducible way. We have developed a new direct liquid injection system for nanoparticle deposition by chemical vapor deposition using a liquid nanoparticle precursor.
View Article and Find Full Text PDFWe report on the observation of complex superlattices at the surface of the topological insulator Bi2Te3. Scanning tunneling microscopy reveals the existence of two different periodic structures in addition to the Bi2Te3 atomic lattice, which is found to strongly affect the local electronic structure. These three different periodicities are interpreted to result from a single small in-plane rotation of the topmost quintuple layer only.
View Article and Find Full Text PDFCo-rich ZnCoO nanoparticles embedded in wurtzite Zn0.7Co0.3O thin films are grown by pulsed laser deposition on a Si substrate.
View Article and Find Full Text PDFMetalated molecules are the ideal building blocks for the bottom-up fabrication of, e.g., two-dimensional arrays of magnetic particles for spintronics applications.
View Article and Find Full Text PDFTo design custom magnetic nanostructures, it is indispensable to acquire precise knowledge about the systems in the nanoscale range where the magnetism forms. In this paper we present the effect of a curved surface on the evolution of magnetism in ultrathin iron films. Nominally 70 Å thick iron films were deposited in 9 steps on 3 different types of templates: (a) a monolayer of silica spheres with 25 nm diameter, (b) a monolayer of silica spheres with 400 nm diameter and (c) for comparison a flat silicon substrate.
View Article and Find Full Text PDF