Clustering of independent component (IC) topographies of Electroencephalograms (EEG) is an effective way to find brain-generated IC processes associated with a population of interest, particularly for those cases where event-related potential features are not available. This paper proposes a novel algorithm for the clustering of these IC topographies and compares its results with the most currently used clustering algorithms. In this study, 32-electrode EEG signals were recorded at a sampling rate of 500 Hz for 48 participants.
View Article and Find Full Text PDFAutomatic diagnosis of arrhythmia by electrocardiogram has a significant role to play in preventing and detecting cardiovascular disease at an early stage. In this study, a deep neural network model based on Harris hawks optimization is presented to arrive at a temporal and spatial fusion of information from ECG signals. Compared with the initial model of the multichannel deep neural network mechanism, the proposed model of this research has a flexible input length; the number of parameters is halved and it has a more than 50% reduction in computations in real-time processing.
View Article and Find Full Text PDFA medical center in the smart cities of the future needs data security and confidentiality to treat patients accurately. One mechanism for sending medical data is to send information to other medical centers without preserving confidentiality. This method is not impressive because in treating people, the privacy of medical information is a principle.
View Article and Find Full Text PDF