The use of the rare earth element gadolinium (Gd) in contrast agents for magnetic resonance imaging has led to a significant (micro-)contamination of riverine and coastal environments in many parts of the world. This study comprises a detailed investigation on the rare earth elements and yttrium inventory of the North Sea and also reports data for the major tributaries Thames, Rhine, Ems, Weser and Elbe. We show that large parts of the southern North Sea, including the Wadden Sea UNESCO Natural World Heritage site, are (micro)contaminated with Gd from Gd-based contrast agents (GBCA).
View Article and Find Full Text PDFAbundance and composition of beach litter and microplastics (20-5000 μm, excluding fibres) were assessed in spring and autumn 2018 at various beaches along the Baltic Sea coast of Schleswig-Holstein, Northern Germany. The beach litter survey followed the OSPAR guidelines, while microplastics were extracted from sediment samples using density separation and were then identified with Raman μ-spectroscopy. We observed seasonality in the abundance and composition, but not in the mass of beach litter.
View Article and Find Full Text PDFIsolation and detection of microplastics (MP) in marine samples is extremely cost- and labor-intensive, limiting the speed and amount of data that can be collected. In the current work, we describe rapid measurement of net-collected MPs (net mesh size 300 µm) using a benchtop near-infrared hyperspectral imaging system during a research expedition to the subtropical North Atlantic gyre. Suspected plastic particles were identified microscopically and mounted on a black adhesive background.
View Article and Find Full Text PDFMarine litter can be found along coasts, continental shelves and slopes, down into the abyss. The absence of light, low temperatures and low energy regimes characterising the deeper habitats ensure the persistence of litter over time. Therefore, manmade items within the deep sea will likely accumulate to increasing quantities.
View Article and Find Full Text PDFDeep-seabed polymetallic nodule mining can have multiple adverse effects on benthic communities, such as permanent loss of habitat by removal of nodules and habitat modification of sediments. One tool to manage biodiversity risks is the mitigation hierarchy, including avoidance, minimization of impacts, rehabilitation and/or restoration, and offset. We initiated long-term restoration experiments at sites in polymetallic nodule exploration contract areas in the Clarion-Clipperton Zone that were (i) cleared of nodules by a preprototype mining vehicle, (ii) disturbed by dredge or sledge, (iii) undisturbed, and (iv) naturally devoid of nodules.
View Article and Find Full Text PDFThe fate of plastic debris entering the oceans is largely unconstrained. Currently, intensified research is devoted to the abiotic and microbial degradation of plastic floating near the ocean surface for an extended period of time. In contrast, the impacts of environmental conditions in the deep sea on polymer properties and rigidity are virtually unknown.
View Article and Find Full Text PDFFuture supplies of rare minerals for global industries with high-tech products may depend on deep-sea mining. However, environmental standards for seafloor integrity and recovery from environmental impacts are missing. We revisited the only midsize deep-sea disturbance and recolonization experiment carried out in 1989 in the Peru Basin nodule field to compare habitat integrity, remineralization rates, and carbon flow with undisturbed sites.
View Article and Find Full Text PDFCarbon dioxide (CO) capture and storage (CCS) has been discussed as a potentially significant mitigation option for the ongoing climate warming. Natural CO release sites serve as natural laboratories to study subsea CO leakage in order to identify suitable analytical methods and numerical models to develop best-practice procedures for the monitoring of subseabed storage sites. We present a new model of bubble (plume) dynamics, advection-dispersion of dissolved CO, and carbonate chemistry.
View Article and Find Full Text PDFIn this paper, we report a failure case of blue LEDs returned from a field application, and propose a practical way to identify the physical and structural reasons for the observed malfunction by a combination of different electron microscope techniques. Cathodoluminescence imaging and electron beam induced current (EBIC) imaging are employed in order to visualize conductive paths through the device in conjunction with subsequent energy dispersive x-ray analysis (EDS), revealing a metal deposition along cracks in the semiconductor layer which short-circuit the device. We demonstrate that the electron beam induced current imaging, in conjunction with other microscopic and analytical techniques at µm scale, is a powerful combination for clearly resolving and visualizing the cause of failure in the GaN LED chip.
View Article and Find Full Text PDFShallow gas migration along hydrocarbon wells constitutes a potential methane emission pathway that currently is not recognized in any regulatory framework or greenhouse gas inventory. Recently, the first methane emission measurements at three abandoned offshore wells in the Central North Sea (CNS) were conducted showing that considerable amounts of biogenic methane originating from shallow gas accumulations in the overburden of deep reservoirs were released by the boreholes. Here, we identify numerous wells poking through shallow gas pockets in 3-D seismic data of the CNS indicating that about one-third of the wells may leak, potentially releasing a total of 3-17 kt of methane per year into the North Sea.
View Article and Find Full Text PDFWith increasing demand for mineral resources, extraction of polymetallic sulphides at hydrothermal vents, cobalt-rich ferromanganese crusts at seamounts, and polymetallic nodules on abyssal plains may be imminent. Here, we shortly introduce ecosystem characteristics of mining areas, report on recent mining developments, and identify potential stress and disturbances created by mining. We analyze species' potential resistance to future mining and perform meta-analyses on population density and diversity recovery after disturbances most similar to mining: volcanic eruptions at vents, fisheries on seamounts, and experiments that mimic nodule mining on abyssal plains.
View Article and Find Full Text PDFTo date, the longevity of plastic litter at the sea floor is poorly constrained. The present study compares colonization and biodegradation of plastic bags by aerobic and anaerobic benthic microbes in temperate fine-grained organic-rich marine sediments. Samples of polyethylene and biodegradable plastic carrier bags were incubated in natural oxic and anoxic sediments from Eckernförde Bay (Western Baltic Sea) for 98 days.
View Article and Find Full Text PDFSediment-hosting hydrothermal systems in the Okinawa Trough maintain a large amount of liquid, supercritical and hydrate phases of CO(2) in the seabed. The emission of CO(2) may critically impact the geochemical, geophysical and ecological characteristics of the deep-sea sedimentary environment. So far it remains unclear whether microbial communities that have been detected in such high-CO(2) and low-pH habitats are metabolically active, and if so, what the biogeochemical and ecological consequences for the environment are.
View Article and Find Full Text PDFJ Mol Spectrosc
December 1999
The rotational spectrum of aniline-methanol was investigated in the frequency region 3-19 GHz using a pulsed molecular beam Fourier transform microwave spectrometer. Sixty-three measured a- and b-type transitions show a fine structure due to internal rotation of the methyl group. The resulting A and E lines are additionally split into hyperfine components arising from quadrupole coupling of the (14)N nucleus.
View Article and Find Full Text PDF