Antibody-oligonucleotide conjugates (AOCs) are promising treatments for Duchenne muscular dystrophy (DMD). They work via induction of exon skipping and restoration of dystrophin protein in skeletal and heart muscles. The structure-activity relationships (SARs) of AOCs comprising antibody-phosphorodiamidate morpholino oligomers (PMOs) depend on several aspects of their component parts.
View Article and Find Full Text PDFAntibody-oligonucleotide conjugates are a promising class of therapeutics for extrahepatic delivery of small interfering ribonucleic acids (siRNAs). These conjugates can be optimized for improved delivery and mRNA knockdown (KD) through understanding of structure-activity relationships. In this study, we systematically examined factors including antibody isotype, siRNA chemistry, linkers, conjugation chemistry, PEGylation, and drug-to-antibody ratios (DARs) for their impact on bioconjugation, pharmacokinetics (PK), siRNA delivery, and bioactivity.
View Article and Find Full Text PDFBiochem Biophys Rep
September 2023
The goal of this paper was to look into the anti-tumor mechanism of Non-Steroidal Anti-Inflammatory Drug (NSAID)-conjugated SN-38 Prodrug in A549 lung cancer cells. We found that Indomethacine-SN-38 (IndoSN-38) and Naproxen-SN-38(NaproSN-38) as a theranostic prodrug targeting cyclooxygenase-2(COX-2) in cancer cells inhibited A549 cell viability in a dose-dependent fashion. IndoSN-38 and NaproSN-38 inhibited A549 cell viability in a dose-dependent fashion.
View Article and Find Full Text PDFPurpose: To develop a tool based on siRNA-mediated knockdown of hepatic P450 oxidoreductase (POR) to decrease the CYP-mediated metabolism of small molecule drugs that suffer from rapid metabolism in vivo, with the aim of improving plasma exposure of these drugs.
Methods: siRNA against the POR gene was delivered using lipid nanoparticles (LNPs) into rats. The time course of POR mRNA knockdown, POR protein knockdown, and loss of POR enzyme activity was monitored.
Background: Antisense MDM2 oligonucleotide (AS-MDM2) sensitizes androgen sensitive LNCaP cells to androgen deprivation (AD) in vitro and in vivo. In this study, we investigated the effects of AS-MDM2 combined with AD on androgen resistant LNCaP (LNCaP-Res) and moderately androgen resistant bcl-2 overexpressing LNCaP (LNCaP-BST) cells.
Methods: The LNCaP-Res cell line was generated by culturing LNCaP cells in medium containing charcoal-stripped serum for more than 1 year.