Publications by authors named "Hadzi-Petrushev N"

This paper presents a dataset obtained from an RT-qPCR array analysis of rat pancreatic RIN-m cells treated with two monocarbonyl analogs of curcumin (MACs), C66 and B2BrBC in the presence or absence of streptozotocin (STZ). The array quantified the expression of 84 genes associated with the onset, development, and progression of diabetes. This dataset provides information on the gene expression profiles of pancreatic cells modulated by two specific MACs in a diabetic context.

View Article and Find Full Text PDF

The pathogenesis of type 1 diabetes mellitus (T1DM) involves oxidative stress and inflammation. Curcumin, a natural polyphenolic compound found in turmeric, known to exhibit antioxidative and anti-inflammatory properties, is characterized by poor chemical stability, low bioavailability, and rapid metabolism. Monocarbonyl analogs of curcumin (MACs) with a structural absence of β-diketone and enhanced stability and bioavailability present a potential solution to the challenges associated with the use of curcumin.

View Article and Find Full Text PDF

Glucose transporter 5 (GLUT5) overexpression has gained increasing attention due to its profound implications for tumorigenesis. This manuscript provides a comprehensive overview of the key findings and implications associated with GLUT5 overexpression in cancer. GLUT5 has been found to be upregulated in various cancer types, leading to alterations in fructose metabolism and enhanced glycolysis, even in the presence of oxygen, a hallmark of cancer cells.

View Article and Find Full Text PDF

Obesity, a global pandemic, poses a major threat to healthcare systems worldwide. Adipose tissue, the energy-storing organ during excessive energy intake, functions as a thermoregulator, interacting with other tissues to regulate systemic metabolism. Specifically, brown adipose tissue (BAT) is positively associated with an increased resistance to obesity, due to its thermogenic function in the presence of uncoupled protein 1 (UCP1).

View Article and Find Full Text PDF

This manuscript explores the intricate role of acetylcholine-activated inward rectifier potassium (K) channels in the pathogenesis of atrial fibrillation (AF), a common cardiac arrhythmia. It delves into the molecular and cellular mechanisms that underpin AF, emphasizing the vital function of K channels in modulating the atrial action potential and facilitating arrhythmogenic conditions. This study underscores the dual nature of K activation and its genetic regulation, revealing that specific variations in potassium channel genes, such as Kir3.

View Article and Find Full Text PDF

This review focuses on the vital function that SIRT1 and other sirtuins play in promoting cellular senescence in vascular smooth muscle cells, which is a key element in the pathogenesis of vascular aging and associated cardiovascular diseases. Vascular aging is a gradual process caused by the accumulation of senescent cells, which results in increased vascular remodeling, stiffness, and diminished angiogenic ability. Such physiological alterations are characterized by a complex interplay of environmental and genetic variables, including oxidative stress and telomere attrition, which affect gene expression patterns and trigger cell growth arrest.

View Article and Find Full Text PDF

A growing body of evidence has demonstrated a relationship between the microbiome, adiposity, and cancer development. The microbiome is emerging as an important factor in metabolic disease and cancer pathogenesis. This review aimed to highlight the role of the microbiome in obesity and its association with cancer, with a particular focus on breast cancer.

View Article and Find Full Text PDF

EF24, a synthetic monocarbonyl analog of curcumin, shows significant potential as an anticancer agent with both chemopreventive and chemotherapeutic properties. It exhibits rapid absorption, extensive tissue distribution, and efficient metabolism, ensuring optimal bioavailability and sustained exposure of the target tissues. The ability of EF24 to penetrate biological barriers and accumulate at tumor sites makes it advantageous for effective cancer treatment.

View Article and Find Full Text PDF

Hyperoxia exposure of immature lungs contributes to lung injury and airway hyperreactivity. Up to now, treatments of airway hyperreactivity induced by hyperoxia exposure have been ineffective. The aim of this study was to investigate the effects of quercetin on hyperoxia-induced airway hyperreactivity, impaired relaxation, and lung inflammation.

View Article and Find Full Text PDF

Technologies are transforming the understanding of adipose tissue as a complex and dynamic tissue that plays a critical role in energy homoeostasis and metabolic health. This mini-review provides a brief overview of the potential impact of novel technologies in biomedical research and aims to identify areas where these technologies can make the most significant contribution to adipose tissue research. It discusses the impact of cutting-edge technologies such as single-cell sequencing, multi-omics analyses, spatial transcriptomics, live imaging, 3D tissue engineering, microbiome analysis, imaging, and artificial intelligence/machine learning.

View Article and Find Full Text PDF

Objectives: This study aimed at evaluating the serum redox status in type 2 diabetes mellitus (T2DM) accompanied with an imbalance in iron concentrations.

Methods: Diabetic patients were grouped according to serum iron levels [normal (DNFe), low (DLFe), and high (DHFe)], and their clinical and redox parameters [total sulfhydryl groups (tSH), uric acid (UA), and total bilirubin (tBILI) as non-enzymatic antioxidants, and malondialdehyde (MDA) and advanced oxidation products of proteins (AOPP) as markers of oxidative stress] were determined.

Results: Glucose and HbA1c levels in the T2DM patients did not differ in function of serum iron.

View Article and Find Full Text PDF

Tetrahydrocurcumin (THC) is a metabolite of curcumin (CUR). It shares many of CUR's beneficial biological activities in addition to being more water-soluble, chemically stable, and bioavailable compared to CUR. However, its mechanisms of action have not been fully elucidated.

View Article and Find Full Text PDF

In this review, the basic metabolic characteristics of the curcuminoid tetrahydrocurcumin (THC) at the level of the intestinal microbiota were addressed. Special attention was given to the bactericidal effects of one of the THC-phospholipid formulations, which has shown greater bioavailability and activity than pure THC. Similarly, quinoline derivatives and amino acid conjugates of THC have also shown antibacterial effects in the gut.

View Article and Find Full Text PDF

Curcumin is a polyphenolic compound derived from turmeric that has potential beneficial properties for cardiovascular and renal diseases and is relatively safe and inexpensive. However, the application of curcumin is rather problematic due to its chemical instability and low bioavailability. The experimental results showed improved chemical stability and potent pharmacokinetics of one of its analogs - (2E,6E)-2,6-bis[(2-trifluoromethyl)benzylidene]cyclohexanone (C66).

View Article and Find Full Text PDF

This study aimed to evaluate the cardioprotective effects of L-2-oxothiazolidine-4-carboxylate (OTC) against isoproterenol (ISO)-induced acute myocardial infarction (MI) in rats. Results demonstrated that OTC treatments inhibited ISO-induced oxidative damage, suppressed lipid peroxidation, and increased superoxide dismutase and catalase activity in the hearts of the treated rats compared to those of the untreated controls. The ISO-related NF-κB activation was reduced due to the OTC treatment, and lower degrees of inflammatory cell infiltration and necrosis in the hearts were observed.

View Article and Find Full Text PDF

Tetrahydrocurcumin (THC), one of the major metabolites of CUR, possesses several CUR-like pharmacological effects; however, its mechanisms of action are largely unknown. This manuscript aims to summarize the literature on the preventive role of THC on vascular dysfunction and the development of hypertension by exploring the effects of THC on hemodynamic status, aortic elasticity, and oxidative stress in vasculature in different animal models. We review the protective effects of THC against hypertension induced by heavy metals (cadmium and iron), as well as its impact on arterial stiffness and vascular remodeling.

View Article and Find Full Text PDF

We aimed to analyze the inflammatory and oxidative stress (OS) markers after intracerebral hemorrhage (ICH) and their temporal changes, interaction effects, and prognostic values as biomarkers for the prediction of the edema volume. Our prospective, longitudinal study included a cohort group of 73 conservatively treated patients with ICH, without hematoma expansion or intraventricular bleeding, which were initialized with the same treatment and provided with the same in-hospital care during the disease course. Study procedures included multilevel comprehensive analyses of clinical and neuroimaging data, aligned with the exploration of 19 inflammatory and five OS markers.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) and associated oxidative stress are the main contributors to pathophysiological changes following myocardial infarction (MI), which is the principal cause of death from cardiovascular disease. The glutathione (GSH)/glutathione peroxidase (GPx) system appears to be the main and most active cardiac antioxidant mechanism. Hence, enhancement of the myocardial GSH system might have protective effects in the setting of MI.

View Article and Find Full Text PDF

The use of oxygen therapy (high doses of oxygen - hyperoxia) in the treatment of premature infants results in their survival. However, it also results in a high incidence of chronic lung disease known as bronchopulmonary dysplasia, a disease in which airway hyper-responsiveness and pulmonary hypertension are well known as consequences. In our previous studies, we have shown that hyperoxia causes airway hyper-reactivity, characterized by an increased constrictive and impaired airway smooth muscle relaxation due to a reduced release of relaxant molecules such as nitric oxide, measured under in vivo and in vitro conditions (extra- and intrapulmonary) airways.

View Article and Find Full Text PDF

The main objective of this study was to determine the primary intracellular signalling pathway affected by prolonged (2 hours) incubation in interleukin-2 (IL-2). Based on the inflammatory nature of IL-2, priority was given to the involvement of inhibitory-kappaB kinase/nuclear factor-kappaB (IKK/NF-κB) signalling. All of the experiments were performed on freshly prepared cardiomyocytes isolated from rat left ventricles.

View Article and Find Full Text PDF

Background: This study was undertaken to test the hypothesis that the newly synthesized curcuminoids B2BrBC and C66 supplementation will overcome hyperoxia-induced tracheal hyperreactivity and impairment of relaxation of tracheal smooth muscle (TSM).

Materials And Methods: Rat pups (P5) were exposed to hyperoxia (>95% O ) or normoxia for 7 days. At P12, tracheal cylinders were used to study in vitro contractile responses induced by methacholine (10 -10 M) or relaxation induced by electrical field stimulation (5-60 V) in the presence/absence of B2BrBC or C66, or to study the direct relaxant effects elicited by both analogs.

View Article and Find Full Text PDF

For 22 days after monocrotaline injection two groups of rats received either of the monocarbonyl curcumin analogs (2E,6E)-2,6-bis(2-bromobenzylidene)cycloxehanone (B2BrBC) and (2E,6E)-2,6-bis([2-trifluoromethyl]benzylidene)cyclohexanone (C66), and their right ventricle parameters were compared to those from the control and the monocrotaline injected animals. B2BrBC and C66 treatments did not prevent the monocrotaline-induced right ventricular hypertrophy but attenuated the changes in antioxidant enzyme activities and reduced inflammation. The level of thiol-based nonenzymatic antioxidants did not change in the function of monocrotaline or curcumin analogs treatment.

View Article and Find Full Text PDF

Oxidative stress and inflammation contribute to the pathogenesis and progression of nonalcoholic fatty liver disease (NAFLD), and the control of lipid status by statins may help to stop the progression of NAFLD. We hypothesized that the addition of antioxidant vitamins C and E to atorvastatin therapy is associated with improved serum enzyme antioxidant status. NAFLD-related serum parameters and the activity of antioxidant enzymes, before and after 3 months of treatment, were determined in patients receiving atorvastatin alone or atorvastatin plus antioxidants.

View Article and Find Full Text PDF

Aim: To test the antioxidant properties of the newly synthesized (2E,6E)-2,6-bis(2-bromobenzylidene)cyclohexanone (B2BrBC) in parallel with C66 in rats with cardiac hypertrophy.

Materials And Methods: The protective effects of both C66 and B2BrBC against oxidative stress in rats with cardiac hypertrophy, was studied by evaluating the activity of antioxidant enzymes, the relationship between the ratio of the activities of the antioxidant enzymes R = SOD/(GPx + CAT) and levels of thiols and lipid peroxidation in the heart. In order to gain better understanding of the antioxidant properties of the studied compounds, computational methods were utilized.

View Article and Find Full Text PDF

Background: Oxidative stress and inflammation are involved in the pathogenesis of paracetamol-induced renal damage. This study examines the relationship between 8-iso-prostaglandin F2α (8-iso-PGF2α) and platelet activation as well as the relative contribution of the pro-inflammatory markers interleukin (IL)-1β and tumor necrosis factor-α (TNF-α) in enhanced 8-iso-PGF2α biosynthesis, as a complementary onset during analgesic nephropathy induced by chronic treatment with paracetamol. The protective effects of vitamin C on the aforementioned settings are also investigated.

View Article and Find Full Text PDF