Publications by authors named "Hadjisolomou P"

The laser pulse focused by a relativistic flying parabolic mirror can exceed the laser intensity focused by conventional physical focusing optics. Depending on the Lorentz γ-factor, the focal length of the relativistic flying mirror in the boosted frame of reference becomes much shorter than the incident beam size. The 4π-spherical focusing scheme is applied to describe such a focused field configuration.

View Article and Find Full Text PDF

The conical phase shift induced by the axicon generates a non-diffracting Bessel beam. In this paper, we examine the propagation property of an electromagnetic wave focused by a thin lens and axicon waveplate combination, which induces a small amount of conical phase shift less than one wavelength. A general expression describing the focused field distribution has been derived under the paraxial approximation.

View Article and Find Full Text PDF

One of the remarkable phenomena in the laser-matter interaction is the extremely efficient energy transfer to [Formula: see text]-photons, that appears as a collimated [Formula: see text]-ray beam. For interactions of realistic laser pulses with matter, existence of an amplified spontaneous emission pedestal plays a crucial role, since it hits the target prior to the main pulse arrival, leading to a cloud of preplasma and drilling a narrow channel inside the target. These effects significantly alter the process of [Formula: see text]-photon generation.

View Article and Find Full Text PDF

The interplay between the frequency chirping of a broadband laser pulse and the longitudinal chromatic aberration of a focusing optic introduces the superluminal or subluminal behavior to a laser focus. In this paper, we present an analytic expression for an electric field describing a superluminal or subluminal femtosecond laser focus with orbital angular momentum. The analytic expression for a superluminal or subluminal laser focus is obtained through a diffraction integral, in which the focal length is replaced by a time-dependent focal length under the paraxial approximation, and the Fourier transformation.

View Article and Find Full Text PDF

We present a regime where an ultraintense laser pulse interacting with a foil target results in high γ-photon conversion efficiency, obtained via three-dimensional quantum-electrodynamics particle-in-cell simulations. A single-cycle laser pulse is used under the tight-focusing condition for obtaining the λ^{3} regime. The simulations employ a radially polarized laser as it results in higher γ-photon conversion efficiency compared to both azimuthal and linear polarizations.

View Article and Find Full Text PDF

Developing compact ion accelerators using intense lasers is a very active area of research, motivated by a strong applicative potential in science, industry and healthcare. However, proposed applications in medical therapy, as well as in nuclear and particle physics demand a strict control of ion energy, as well as of the angular and spectral distribution of ion beam, beyond the intrinsic limitations of the several acceleration mechanisms explored so far. Here we report on the production of highly collimated ([Formula: see text] half angle divergence), high-charge (10s of pC) and quasi-monoenergetic proton beams up to [Formula: see text] 50 MeV, using a recently developed method based on helical coil targetry.

View Article and Find Full Text PDF

The characteristics of laser driven proton beams can be efficiently controlled and optimised by employing a recently developed helical coil technique, which exploits the transient self-charging of solid targets irradiated by intense laser pulses. Here we demonstrate a well collimated (<1° divergence) and narrow bandwidth (~10% energy spread) proton beamlet of ~10 particles at 10 ± 0.5 MeV obtained by irradiating helical coil targets with a few joules, sub-ps laser pulses at an intensity of ~2 × 10 W cm.

View Article and Find Full Text PDF

We present the characteristics of track formation on the front and rear surfaces of CR-39 produced by laser-driven protons and carbon ions. A methodological approach, based on bulk etch length, is proposed to uniquely characterize the particle tracks in CR-39, enabling comparative description of the track characteristics in different experiments. The response of CR-39 to ions is studied based on the energy dependent growth rate of the track diameter to understand the intrinsic particle stopping process within the material.

View Article and Find Full Text PDF

A significant level of back reflected laser energy was measured during the interaction of ultra-short, high contrast PW laser pulses with solid targets at 30° incidence. 2D PIC simulations carried out for the experimental conditions show that at the laser-target interface a dynamic regular structure is generated during the interaction, which acts as a grating (quasi-grating) and reflects back a significant amount of incident laser energy. With increasing laser intensity above 10 W/cm the back reflected fraction increases due to the growth of the surface modulation to larger amplitudes.

View Article and Find Full Text PDF

The absolute calibration of a microchannel plate (MCP) assembly using a Thomson spectrometer for laser-driven ion beams is described. In order to obtain the response of the whole detection system to the particles' impact, a slotted solid state nuclear track detector (CR-39) was installed in front of the MCP to record the ions simultaneously on both detectors. The response of the MCP (counts/particles) was measured for 5-58 MeV carbon ions and for protons in the energy range 2-17.

View Article and Find Full Text PDF

All-optical approaches to particle acceleration are currently attracting a significant research effort internationally. Although characterized by exceptional transverse and longitudinal emittance, laser-driven ion beams currently have limitations in terms of peak ion energy, bandwidth of the energy spectrum and beam divergence. Here we introduce the concept of a versatile, miniature linear accelerating module, which, by employing laser-excited electromagnetic pulses directed along a helical path surrounding the laser-accelerated ion beams, addresses these shortcomings simultaneously.

View Article and Find Full Text PDF