Publications by authors named "Hadi Shafiee"

Gene therapy enables the introduction of nucleic acids like DNA and RNA into host cells, and is expected to revolutionize the treatment of a wide range of diseases. This growth has been further accelerated by the discovery of CRISPR/Cas technology, which allows accurate genomic editing in a broad range of cells and organisms . Despite many advances in gene delivery and the development of various viral and non-viral gene delivery vectors, the lack of highly efficient non-viral systems with low cellular toxicity remains a challenge.

View Article and Find Full Text PDF

Purpose: To determine if creating voting ensembles combining convolutional neural networks (CNN), support vector machine (SVM), and multi-layer neural networks (NN) alongside clinical parameters improves the accuracy of artificial intelligence (AI) as a non-invasive method for predicting aneuploidy.

Methods: A cohort of 699 day 5 PGT-A tested blastocysts was used to train, validate, and test a CNN to classify embryos as euploid/aneuploid. All embryos were analyzed using a modified FAST-SeqS next-generation sequencing method.

View Article and Find Full Text PDF

Purpose: To determine if deep learning artificial intelligence algorithms can be used to accurately identify key morphologic landmarks on oocytes and cleavage stage embryo images for micromanipulation procedures such as intracytoplasmic sperm injection (ICSI) or assisted hatching (AH).

Methods: Two convolutional neural network (CNN) models were trained, validated, and tested over three replicates to identify key morphologic landmarks used to guide embryologists when performing micromanipulation procedures. The first model (CNN-ICSI) was trained (n = 13,992), validated (n = 1920), and tested (n = 3900) to identify the optimal location for ICSI through polar body identification.

View Article and Find Full Text PDF

Purpose: Deep learning neural networks have been used to predict the developmental fate and implantation potential of embryos with high accuracy. Such networks have been used as an assistive quality assurance (QA) tool to identify perturbations in the embryo culture environment which may impact clinical outcomes. The present study aimed to evaluate the utility of an AI-QA tool to consistently monitor ART staff performance (MD and embryologist) in embryo transfer (ET), embryo vitrification (EV), embryo warming (EW), and trophectoderm biopsy (TBx).

View Article and Find Full Text PDF

Deep learning-enabled smartphone-based image processing has significant advantages in the development of point-of-care diagnostics. Conventionally, most deep-learning applications require task specific large scale expertly annotated datasets. Therefore, these algorithms are oftentimes limited only to applications that have large retrospective datasets available for network development.

View Article and Find Full Text PDF

Assessment of swine semen quality is important as it is used as an estimate of the fertility of an ejaculate. There are many methods to measure sperm morphology, concentration, and motility, however, some methods require expensive instrumentation or are not easy to use on-farm. A portable, low-cost, automated device could provide the potential to assess semen quality in field conditions.

View Article and Find Full Text PDF

Purpose: To determine whether convolutional neural networks (CNN) can be used to accurately ascertain the patient identity (ID) of cleavage and blastocyst stage embryos based on image data alone.

Methods: A CNN model was trained and validated over three replicates on a retrospective cohort of 4889 time-lapse embryo images. The algorithm processed embryo images for each patient and produced a unique identification key that was associated with the patient ID at a timepoint on day 3 (~ 65 hours post-insemination (hpi)) and day 5 (~ 105 hpi) forming our data library.

View Article and Find Full Text PDF

CRISPR (Clustered regularly interspaced short palindromic repeats)-based diagnostic technologies have emerged as a promising alternative to accelerate delivery of SARS-CoV-2 molecular detection at the point of need. However, efficient translation of CRISPR-diagnostic technologies to field application is still hampered by dependence on target amplification and by reliance on fluorescence-based results readout. Herein, an amplification-free CRISPR/Cas12a-based diagnostic technology for SARS-CoV-2 RNA detection is presented using a smartphone camera for results readout.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to review mobile health (mHealth) technologies for monitoring and addressing the impacts of the COVID-19 pandemic.
  • A specialized Task Force gathered experts in electronic Patient-Reported Outcomes, wearable sensors, and digital contact tracing to evaluate and summarize relevant information.
  • mHealth technologies were found to be effective for monitoring COVID-19 patients, predicting symptom escalation, and assessing exposure risk in non-infected individuals to improve diagnostic testing prioritization.
View Article and Find Full Text PDF

In machine learning for image-based medical diagnostics, supervised convolutional neural networks are typically trained with large and expertly annotated datasets obtained using high-resolution imaging systems. Moreover, the network's performance can degrade substantially when applied to a dataset with a different distribution. Here, we show that adversarial learning can be used to develop high-performing networks trained on unannotated medical images of varying image quality.

View Article and Find Full Text PDF

Staff competency is a crucial component of the in vitro fertilization (IVF) laboratory quality management system because it impacts clinical outcomes and informs the key performance indicators (KPIs) used to continuously monitor and assess culture conditions. Contemporary quality control and assurance in the IVF lab can be automated (collect, store, retrieve, and analyze), to elevate quality control and assurance beyond the cursory monthly review. Here we demonstrate that statistical KPI monitoring systems for individual embryologist performance and culture conditions can be detected by artificial intelligence systems to provide systemic, early detection of adverse outcomes, and identify clinically relevant shifts in pregnancy rates, providing critical validation for two statistical process controls proposed in the Vienna Consensus Document; intracytoplasmic sperm injection (ICSI) fertilization rate and day 3 embryo quality.

View Article and Find Full Text PDF

Background: The present study aimed to control mebendazole drug release from ethyl cellulose nanofibers containing guar gum produced by Electrospinning Method (ESM) on mortality of hydatid cyst protoscoleces under laboratory conditions.

Methods: The study was conducted in Arak Islamic Azad University, 2019. After preparation of ethyl cellulose nanofibers containing guar gum with concentrations 10, 250, 50 and 500 ppm with ESM, the uniformity and fineness of nanofibers were investigated by electron microscope.

View Article and Find Full Text PDF

A critical factor that influences the success of an in-vitro fertilization (IVF) treatment cycle is the quality of the transferred embryo. Embryo morphology assessments, conventionally performed through manual microscopic analysis suffer from disparities in practice, selection criteria, and subjectivity due to the experience of the embryologist. Convolutional neural networks (CNNs) are powerful, promising algorithms with significant potential for accurate classifications across many object categories.

View Article and Find Full Text PDF

Emerging and reemerging infections present an ever-increasing challenge to global health. Here, we report a nanoparticle-enabled smartphone (NES) system for rapid and sensitive virus detection. The virus is captured on a microchip and labeled with specifically designed platinum nanoprobes to induce gas bubble formation in the presence of hydrogen peroxide.

View Article and Find Full Text PDF

Deep-learning (DL)-based image processing has potential to revolutionize the use of smartphones in mobile health (mHealth) diagnostics of infectious diseases. However, the high variability in cellphone image data acquisition and the common need for large amounts of specialist-annotated images for traditional DL model training may preclude generalizability of smartphone-based diagnostics. Here, we employed adversarial neural networks with conditioning to develop an easily reconfigurable virus diagnostic platform that leverages a dataset of smartphone-taken microfluidic chip photos to rapidly generate image classifiers for different target pathogens on-demand.

View Article and Find Full Text PDF

Artificial intelligence (AI) systems have been proposed for reproductive medicine since 1997. Although AI is the main driver of emergent technologies in reproduction, such as robotics, Big Data, and internet of things, it will continue to be the engine for technological innovation for the foreseeable future. What does the future of AI research look like?

View Article and Find Full Text PDF

Deep learning in in vitro fertilization is currently being evaluated in the development of assistive tools for the determination of transfer order and implantation potential using time-lapse data collected through expensive imaging hardware. Assistive tools and algorithms that can work with static images, however, can help in improving the access to care by enabling their use with images acquired from traditional microscopes that are available to virtually all fertility centers. Here, we evaluated the use of a deep convolutional neural network (CNN), trained using single timepoint images of embryos collected at 113 hr post-insemination, in embryo selection amongst 97 clinical patient cohorts (742 embryos) and observed an accuracy of 90% in choosing the highest quality embryo available.

View Article and Find Full Text PDF

Objective: To evaluate the consistency and objectivity of deep neural networks in embryo scoring and making disposition decisions for biopsy and cryopreservation in comparison to grading by highly trained embryologists.

Design: Prospective double-blind study using retrospective data.

Setting: U.

View Article and Find Full Text PDF

Embryo assessment and selection is a critical step in an in vitro fertilization (IVF) procedure. Current embryo assessment approaches such as manual microscopy analysis done by embryologists or semi-automated time-lapse imaging systems are highly subjective, time-consuming, or expensive. Availability of cost-effective and easy-to-use hardware and software for embryo image data acquisition and analysis can significantly empower embryologists towards more efficient clinical decisions both in resource-limited and resource-rich settings.

View Article and Find Full Text PDF

The fundamental test for male infertility, semen analysis, is mostly a manually performed subjective and time-consuming process and the use of automated systems has been cost prohibitive. We have previously developed an inexpensive smartphone-based system for at-home male infertility screening through automatic and rapid measurement of sperm concentration and motility. Here, we assessed the feasibility of using a similar smartphone-based system for laboratory use in measuring: a) Hyaluronan Binding Assay (HBA) score, a quantitative score describing the sperm maturity and fertilization potential in a semen sample, b) sperm viability, which assesses sperm membrane integrity, and c) sperm DNA fragmentation that assesses the degree of DNA damage.

View Article and Find Full Text PDF

The ability to accurately predict ovulation at-home using low-cost point-of-care diagnostics can be of significant help for couples who prefer natural family planning. Detecting ovulation-specific hormones in urine samples and monitoring basal body temperature are the current commonly home-based methods used for ovulation detection; however, these methods, relatively, are expensive for prolonged use and the results are difficult to comprehend. Here, we report a smartphone-based point-of-care device for automated ovulation testing using artificial intelligence (AI) by detecting fern patterns in a small volume (<100 μL) of saliva that is air-dried on a microfluidic device.

View Article and Find Full Text PDF

A low-cost and easy-to-fabricate microchip remains a key challenge for the development of true point-of-care (POC) diagnostics. Cellulose paper and plastic are thin, light, flexible, and abundant raw materials, which make them excellent substrates for mass production of POC devices. Herein, a hybrid paper-plastic microchip (PPMC) is developed, which can be used for both single and multiplexed detection of different targets, providing flexibility in the design and fabrication of the microchip.

View Article and Find Full Text PDF

HIV-1 infection is a major health threat in both developed and developing countries. The integration of mobile health approaches and bioengineered catalytic motors can allow the development of sensitive and portable technologies for HIV-1 management. Here, we report a platform that integrates cellphone-based optical sensing, loop-mediated isothermal DNA amplification and micromotor motion for molecular detection of HIV-1.

View Article and Find Full Text PDF

Zika virus (ZIKV) is a reemerging flavivirus causing an ongoing pandemic and public health emergency worldwide. There are currently no effective vaccines or specific therapy for Zika infection. Rapid, low-cost diagnostics for mass screening and early detection are of paramount importance in timely management of the infection at the point-of-care (POC).

View Article and Find Full Text PDF