J Med Imaging (Bellingham)
October 2016
Cancer is the second leading cause of death in US after cardiovascular disease. Image-based computer-aided diagnosis can assist physicians to efficiently diagnose cancers in early stages. Existing computer-aided algorithms use hand-crafted features such as wavelet coefficients, co-occurrence matrix features, and recently, histogram of shearlet coefficients for classification of cancerous tissues and cells in images.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
October 2015
This paper presents a method to diagnose prostate cancer on multiparametric magnetic resonance imaging (Mp-MRI) using the shearlet transform. The objective is classification of benign and malignant regions on transverse relaxation time weighted (T2W), dynamic contrast enhanced (DCE), and apparent diffusion coefficient (ADC) images. Compared with conventional wavelet filters, shearlet has inherent directional sensitivity, which makes it suitable for characterizing small contours of cancer cells.
View Article and Find Full Text PDF