Publications by authors named "Hadi Ramezani-Dakhel"

In this work, we investigate the possibility of inducing valence transitions, transitions between different defect configurations, by transforming a nematic shell into a nematic droplet. Our shells are liquid crystal droplets containing a smaller aqueous droplet inside, which are suspended in an aqueous phase. When osmotically de-swelling the inner droplet, the shell progressively increases its thickness until it eventually becomes a single droplet.

View Article and Find Full Text PDF

Monolayer assemblies of amphiphiles at planar interfaces between thermotropic liquid crystals (LCs) and an aqueous phase can give rise to configurational transitions of the underlying LCs. A common assumption has been that a reconfiguration of the LC phase is caused by an interdigitation of the hydrophobic tails of amphiphiles with the molecules of the LC at the interface. A different mechanism is discovered here, whereby reorientation of the LC systems is shown to occur through lowering of the orientation-dependent surface energy of the LC due to formation of a thin isotropic layer at the aqueous interface.

View Article and Find Full Text PDF

Metallic nanostructures have become popular for applications in therapeutics, catalysts, imaging, and gene delivery. Molecular dynamics simulations are gaining influence to predict nanostructure assembly and performance; however, instantaneous polarization effects due to induced charges in the free electron gas are not routinely included. Here we present a simple, compatible, and accurate polarizable potential for gold that consists of a Lennard-Jones potential and a harmonically coupled core-shell charge pair for every metal atom.

View Article and Find Full Text PDF

Molecular simulation has emerged as an essential tool for modern-day research, but obtaining proper results and making reliable conclusions from simulations requires adequate sampling of the system under consideration. To this end, a variety of methods exist in the literature that can enhance sampling considerably, and increasingly sophisticated, effective algorithms continue to be developed at a rapid pace. Implementation of these techniques, however, can be challenging for experts and non-experts alike.

View Article and Find Full Text PDF

It is well understood that the adsorption of solutes at the interface between a bulk liquid crystal phase and an aqueous phase can lead to orientational or anchoring transitions. A different principle is introduced here, whereby a transient reorientation of a thermotropic liquid crystal is triggered by a spontaneous flux of water across the interface. A critical water flux can be generated by the addition of an electrolyte to the bulk aqueous phase, leading to a change in the solvent activity; water is then transported through the liquid crystal phase and across the interface.

View Article and Find Full Text PDF

Colloidal metal nanocrystals find many applications in catalysis, energy conversion devices, and therapeutics. However, the nature of ligand interactions and implications on shape control have remained uncertain at the atomic scale. Large differences in peptide adsorption strength and facet specificity were found on flat palladium surfaces versus surfaces of nanoparticles of 2 to 3 nm size using accurate atomistic simulations with the Interface force field.

View Article and Find Full Text PDF

The structure and physical properties of liquid crystal (LC) mixtures are a function of composition, and small changes can have pronounced effects on observables, such as phase-transition temperatures. Traditionally, LC mixtures have been assumed to be compositionally homogenous. The results of chemically detailed simulations presented here show that this is not the case; pronounced deviations of the local order from that observed in the bulk at defects and interfaces lead to significant compositional segregation effects.

View Article and Find Full Text PDF

Numerous applications of liquid crystals rely on control of molecular orientation at an interface. However, little is known about the precise molecular structure of such interfaces. In this work, synchrotron X-ray reflectivity measurements, accompanied by large-scale atomistic molecular dynamics simulations, are used for the first time to reconstruct the air-liquid crystal interface of a nematic material, namely, 4-pentyl-4'-cyanobiphenyl (5CB).

View Article and Find Full Text PDF

The ordered environment presented by liquid crystals at interfaces enables a range of novel functionalities that is only now beginning to be exploited in applications ranging from light focusing devices to biosensors. One key feature of liquid crystals is that molecular events occurring at an interface propagate over large distances through the bulk. In spite of their importance, our fundamental understanding of liquid crystal-water and liquid crystal-air interfaces remains limited.

View Article and Find Full Text PDF

Natural and man-made materials often rely on functional interfaces between inorganic and organic compounds. Examples include skeletal tissues and biominerals, drug delivery systems, catalysts, sensors, separation media, energy conversion devices, and polymer nanocomposites. Current laboratory techniques are limited to monitor and manipulate assembly on the 1 to 100 nm scale, time-consuming, and costly.

View Article and Find Full Text PDF

C-C coupling reactions are of great importance in the synthesis of numerous organic compounds, where Pd nanoparticle catalyzed systems represent new materials to efficiently drive these reactions. Despite their pervasive utility, the catalytic mechanism of these particle-based reactions remains highly contested. Herein we present evidence of an atom leaching mechanism for Stille coupling under aqueous conditions using peptide-capped Pd nanoparticles.

View Article and Find Full Text PDF
Article Synopsis
  • Crystallography has traditionally been used to determine 3D atomic positions in crystals, providing a global average but not specific individual atom locations.
  • A new method using electron tomography allows for the precise determination of the 3D coordinates of thousands of individual atoms, including defects, with a high level of accuracy (∼19 pm) and without relying on crystallinity.
  • This advancement enables detailed measurements of atomic displacement and strain at a micro-level, which can significantly impact various scientific fields such as materials science, physics, and biology.
View Article and Find Full Text PDF

Peptide-enabled synthesis of inorganic nanostructures represents an avenue to access catalytic materials with tunable and optimized properties. This is achieved via peptide complexity and programmability that is missing in traditional ligands for catalytic nanomaterials. Unfortunately, there is limited information available to correlate peptide sequence to particle structure and catalytic activity to date.

View Article and Find Full Text PDF

Controlling the morphology of nanocrystals (NCs) is of paramount importance for both fundamental studies and practical applications. The morphology of NCs is determined by the seed structure and the following facet growth. While means for directing facet formation in NC growth have been extensively studied, rational strategies for the production of NCs bearing structure defects in seeds have been much less explored.

View Article and Find Full Text PDF

Peptide-based methods represent new approaches to selectively produce nanostructures with potentially important functionality. Unfortunately, biocombinatorial methods can only select peptides with target affinity and not for the properties of the final material. In this work, we present evidence to demonstrate that materials-directing peptides can be controllably modified to substantially enhance particle functionality without significantly altering nanostructural morphology.

View Article and Find Full Text PDF

Surfactant-stabilized metal nanoparticles have shown promise as catalysts although specific surface features and their influence on catalytic performance have not been well understood. We quantify the thermodynamic stability, the facet composition of the surface, and distinct atom types that affect rates of atom leaching for a series of twenty near-spherical Pd nanoparticles of 1.8 to 3.

View Article and Find Full Text PDF

Surfactants with preferential adsorption to certain crystal facets have been widely employed to manipulate morphologies of colloidal nanocrystals, while mechanisms regarding the origin of facet selectivity remain an enigma. Similar questions exist in biomimetic syntheses concerning biomolecular recognition to materials and crystal surfaces. Here we present mechanistic studies on the molecular origin of the recognition toward platinum {111} facet.

View Article and Find Full Text PDF