Publications by authors named "Hadi Nur"

The present study evaluates the corrosion behavior of poly[xylitol-(1,12-dodecanedioate)](PXDD)-HA coated porous iron (PXDD140/HA-Fe) and its cell-material interaction aimed for temporary bone scaffold applications. The physicochemical analyses show that the addition of 20 wt.% HA into the PXDD polymers leads to a higher crystallinity and lower surface roughness.

View Article and Find Full Text PDF

Chitosan-based cryogel particles were synthesized using the inverse Leidenfrost (iLF) effect, with glutaraldehyde employed as the cross-linker. The resulting cryogels exhibited a sponge-like morphology with micrometer-sized interconnected pores and demonstrated resilience, withstanding up to three compression-release cycles. These characteristics highlight the potential of chitosan cryogels for diverse applications, including adsorption and biomedical uses.

View Article and Find Full Text PDF

The hydrogenation reaction of alkene is one of the most used industrial chemical process for various materials of daily life and energy consumption. This is a heterogeneous reaction and traditionally carried out by metallic catalysis. However, these conventional catalytic hydrogenations of alkene suffer from various setbacks such as catalyst poisoning, less recyclability and are environmentally unfriendly.

View Article and Find Full Text PDF

This study performs natural sand-based synthesis using the sonochemical route for preparing Zn-doped magnetite nanoparticles. The nanoparticles were dispersed in water as a carrier liquid to form Zn-doped magnetite aqueous ferrofluids. Structural data analysis indicated that the Zn-doped magnetite nanoparticles formed a nanosized spinel structure.

View Article and Find Full Text PDF

Iron (Fe) and Fe-based materials have been vigorously explored in orthopedic applications in the past decade mainly owing to their promising mechanical properties including high yield strength, elastic modulus and ductility. Nevertheless, their corrosion products and low corrosion kinetics are the major concerns that need to be improved further despite their appealing mechanical strengths. The current studies on porous Fe-based scaffolds show an improved corrosion rate but the in vitro biocompatibility is still problematic in general.

View Article and Find Full Text PDF

This research aimed to enhance the antibacterial activity of silver nanoparticles (AgNPs) synthesized from silver nitrate (AgNO) using aloe vera extract. It was performed by means of incorporating AgNPs on an activated carbon nanoparticle (ACNPs) under ultrasonic agitation (40 kHz, 2 × 50 watt) for 30 min in an aqueous colloidal medium. The successful AgNPs synthesis was clarified with both Ultraviolet-Visible (UV-Vis) and Fourier Transform Infrared (FTIR) spectrophotometers.

View Article and Find Full Text PDF

Iron (Fe) and Fe-based scaffolds have become a research frontier in absorbable materials which is inherent to their promising mechanical properties including fatigue strength and ductility. Nevertheless, their slow corrosion rate and low biocompatibility have been their major obstacles to be applied in clinical applications. Over the last decade, various modifications on porous Fe-based scaffolds have been performed to ameliorate both properties encompassing surface coating, microstructural alteration via alloying, and advanced topologically order structural design produced by additive manufacturing (AM) techniques.

View Article and Find Full Text PDF

This work is dedicated to the investigation of drug-release control by a direct effect of degradation from biodegradable metallic surfaces. Degradation behaviors characterized by surface morphology, immersion, and electrochemical techniques demonstrated that curcumin-coated zinc (c-Zn) had a higher degradation rate compared to curcumin-coated Fe (c-Fe). High anodic dissolution rate due to the higher degradation rate and widely extended groove-like degradation structure of c-Zn propelled a higher curcumin release.

View Article and Find Full Text PDF

Recently, increasing public concern about hygiene has been driving many studies to investigate antimicrobial and antiviral agents. However, the use of any antimicrobial agents must be limited due to their possible toxic or harmful effects. In recent years, due to previous antibiotics' lesser side effects, the use of herbal materials instead of synthetic or chemical drugs is increasing.

View Article and Find Full Text PDF

Photocatalytic remediation of industrial water pollution has courted intense attention lately due to its touted green approach. In this respect, Keggin-based polyoxometalates (POMs) as green solid acids in photocatalytic reaction possess superior qualities, viz. unique photoinduced charge-transfer properties, strong photooxidative-photoreductive ability, high chemical and thermal stability, and so forth.

View Article and Find Full Text PDF

Pharmaceutical nano-fibers have attracted widespread attention from researchers for reasons such as adaptability of the electro-spinning process and ease of production. As a flexible method for fabricating nano-fibers, electro-spinning is extensively used. An electro-spinning unit is composed of a pump or syringe, a high voltage current supplier, a metal plate collector and a spinneret.

View Article and Find Full Text PDF

The microstructures of the activated carbon black microparticles (ACBMPs) generated through both treatments of 20 min ultrasonic and 400 °C thermal energy equivalent have been analyzed properly using scanning electron microscope (SEM), X-ray diffraction (XRD) and Fourier-transformed infrared (FTIR) spectroscopy methods. The research was aiming to generate binding or active sites points on the outer surface of the ACBMPs body of which commonly plays an important role in both adsorption and catalytic processes. It was observed that around 150 nm up to 400 nm in average diameter super macro voids with many various turns of nano-scale wells, and around 1.

View Article and Find Full Text PDF

The demonstration of the structure-properties relationship of shape-dependent photocatalysts remains a challenge today. Herein, one-dimensional (1-D)-like titania (TiO), as a model photocatalyst, has been synthesized under a strong magnetic field in the presence of a magnetically responsive liquid crystal as the structure-aligning agent to demonstrate the relationship between a well-aligned structure and its photocatalytic properties. The importance of the 1-D-like TiO and its relationship with the electronic structures that affect the electron-hole recombination and the photocatalytic activity need to be clarified.

View Article and Find Full Text PDF

Immunostaining is widely used in cell biology for the in situ detection of proteins in fixed cells. The method is based on the specificity of antibodies for recognizing and binding to a selected target, combined with immunolabeling techniques for microscopic imaging. Antibodies with high specificities for modified nucleotides have also been widely developed, and among those, antibodies that recognize modified cytosine: 5-methylcytosine (5mC), and more recently, its derivates 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC).

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Acalypha indica is an herbal plant that grows in wet, temperate and tropical region, primarily along the earth's equator line. This plant is considered by most people as a weed and can easily be found in these regions. Although this plant is a weed, Acalypha indica has been acknowledged by local people as a useful source of medicine for several therapeutic treatments.

View Article and Find Full Text PDF

A rapid dispersive micro-solid phase extraction (D-μ-SPE) combined with LC/MS/MS method was developed and validated for the determination of ketoconazole and voriconazole in human urine and plasma samples. Synthesized mesoporous silica MCM-41 was used as sorbent in d-μ-SPE of the azole compounds from biological fluids. Important D-μ-SPE parameters, namely type desorption solvent, extraction time, sample pH, salt addition, desorption time, amount of sorbent and sample volume were optimized.

View Article and Find Full Text PDF

In this study, the zinc oxide (ZnO) layer was synthesised on the surface of Zn plates by three different techniques, i.e. electrolysis, hydrogen peroxide and heat treatment.

View Article and Find Full Text PDF

Rising global temperature, worsening air quality and drastic declining of fossil fuel reserve are the inevitable phenomena from the disorganized energy management. Bioethanol is believed to clear out the effects as being an energy-derivable product sourced from renewable organic sources. Second generation bioethanol interests many researches from its unique source of inedible biomass, and this paper presents the potential of several selected biomasses from Malaysia case.

View Article and Find Full Text PDF

Iron and its alloy have been proposed as biodegradable metals for temporary medical implants. However, the formation of iron oxide and iron phosphate on their surface slows down their degradation kinetics in both in vitro and in vivo scenarios. This work presents new approach to tailor degradation behavior of iron by incorporating biodegradable polymers into the metal.

View Article and Find Full Text PDF

Hydroxyapatite (HAp) is an attractive bioceramics due to its similar composition to bone mineral and its ability to promote bone-implant interaction. However, its low strength has limited its application as load bearing implants. This paper presented a work focusing on the improvement of HAp mechanical property by synthesizing iron (Fe)-reinforced bovine HAp nanocomposite powders via mechanosynthesis method.

View Article and Find Full Text PDF

We tested Apperly and Butterfill's (2009, Psychological Review, 116, 753) theory that humans have two mindreading systems whereby the efficient-system guiding anticipatory glances displays signature limits that do not apply to the flexible system guiding verbal predictions. Experiments 1 and 2 tested urban Mainland-Chinese adults (n = 64) and Experiment 3 tested Semai children living in the rainforests of Peninsular Malaysia (3- to 4-year-olds, n = 60). Participants - across different ages, groups and methods - anticipated others' false-beliefs about object-location but not object-identity.

View Article and Find Full Text PDF

A microparticle material of gold/polystyrene-coated hollow titania was successfully synthesized. The synthesis steps involved hydrothermal synthesis of a carbon sphere from sucrose as a template, coating of the carbon sphere with titania, removal of the carbon sphere to produce hollow titania, followed by coating of polystyrene on the surface of hollow titania and then attachment of gold nanoparticles. It has been demonstrated that this material can float on water due to its low density and it is a potential catalyst for liquid-gas boundary catalysis in oxidation of benzyl alcohol by using molecular oxygen.

View Article and Find Full Text PDF

The surfaces of NaY zeolite particles were modified by the alkylsilylation of n-octadecyltrichlorosilane (OTS). Two kinds of modified NaY zeolites were prepared; one with its external surface partially and the other fully covered with alkylsilyl groups. Since the size of OTS is bigger than the pore diameter of NaY, it is attached on the external surface, leaving the internal pore accessible to adsorbate molecules.

View Article and Find Full Text PDF