Int J Environ Res Public Health
February 2020
The number of tuberculosis (TB) cases in Pakistan ranks fifth in the world. The National TB Control Program (NTP) has recently reported more than 462,920 TB patients in Khyber Pakhtunkhwa province, Pakistan from 2002 to 2017. This study aims to identify spatial and space-time clusters of TB cases in Khyber Pakhtunkhwa province Pakistan during 2015-2019 to design effective interventions.
View Article and Find Full Text PDFMotivation: Visualization of high-dimensional data is an important step in exploratory data analysis and knowledge discovery. However, it is challenging, because the interpretation is highly subjective. If we see dimensionality reduction (DR) techniques as the main tool for data visualization, they are like multiple cameras that look into the data from different perspectives or angles.
View Article and Find Full Text PDFIdentifying the abnormally high-risk regions in a spatiotemporal space that contains an unexpected disease count is helpful to conduct surveillance and implement control strategies. The EigenSpot algorithm has been recently proposed for detecting space-time disease clusters of arbitrary shapes with no restriction on the distribution and quality of the data, and has shown some promising advantages over the state-of-the-art methods. However, the main problem with the EigenSpot method is that it cannot be adapted to detect more than one spatiotemporal hotspot.
View Article and Find Full Text PDF