Environ Sci Technol
November 2024
Per- and polyfluoroalkyl substances (PFAS) are ubiquitous environmental contaminants that often co-occur with heavy metals. Despite their prevalence, the mobility of PFAS in complex, multicomponent systems, particularly at the molecular scale, remains poorly understood. The vast diversity of PFAS and their low concentrations alongside anthropogenic and natural substances underscore the need for integrating mechanistic insights into the sorption models.
View Article and Find Full Text PDFThe most widely used herbicide glyphosate contaminates surface waters around the globe. Both agriculture and urban applications are discussed as sources for glyphosate. To better delineate these sources, we investigated long-term time series of concentrations of glyphosate and its main transformation product aminomethylphosphonic acid (AMPA) in a large meta-analysis of about 100 sites in the USA and Europe.
View Article and Find Full Text PDFNatural amino acids (NAA) have been rarely investigated as chelators, despite their ability to chelate heavy metals (HMs). In the present research, the effects of extracted natural amino acids, as a natural and environmentally friendly chelate agent and the inoculation of () and () bacteria were investigated on some responses of quinoa in a soil polluted with Pb, Ni, Cd, and Zn. Inoculation of PGPR bacteria enhanced plant growth and phytoremediation efficiency.
View Article and Find Full Text PDFSimultaneous application of modified FeO with biological treatments in remediating multi-metal polluted soils, has rarely been investigated. Thus, a pioneering approach towards sustainable environmental remediation strategies is crucial. In this study, we aimed to improve the efficiency of FeO as adsorbents for heavy metals (HMs) by applying protective coatings.
View Article and Find Full Text PDFCompound-specific isotope analysis (CSIA) gas chromatography-isotope ratio mass spectrometry (GC-IRMS) is a potent tool to elucidate the fate of (semi-)volatile organic contaminants in technical and environmental systems. Yet, due to the comparatively low sensitivity of IRMS, an enrichment step prior to analysis often is inevitable. A promising approach for fast as well as economic analyte extraction and preconcentration prior to CSIA is dispersive liquid-liquid microextraction (DLLME) - a well-established technique in concentration analysis of contaminants from aqueous samples.
View Article and Find Full Text PDFAminopolyphosphonates (APPs) are strong chelating agents with growing use in industrial and household applications. In this study, we investigated the oxidation of the bisphosphonate iminodi(methylene phosphonate) (IDMP) - a major transformation product (TP) of numerous commercially used APPs and a potential precursor for aminomethylphosphonate (AMPA) - on manganese dioxide (MnO). Transformation batch experiments at pH 6 revealed AMPA and phosphate as main TPs, with a phosphorus mass balance of 80 to 92% throughout all experiments.
View Article and Find Full Text PDFGlyphosate, an ionizable organic herbicide, is frequently detected in soils and groundwater globally despite its strong retention via sorption. Understanding its apparent mobility hinges on our ability to quantify its system-specific sorption behavior, hindered by its affinity to adsorb onto sediments, yielding very low aqueous concentrations. Here, we present findings from a saturated flow-through column experiment in which we monitored glyphosate sorption onto a natural calcareous aquifer sediment, using the noninvasive geophysical method spectral induced polarization (SIP).
View Article and Find Full Text PDFRationale: The recent development of reliable GC/qMS methods for δ Cl compound-specific stable isotope analysis (CSIA) paves the way for dual carbon-chlorine isotope analysis of chlorinated ethenes and thus allows deeper insights into underlying transformation processes/mechanisms. A two-point calibration is indispensable for the precise and correct conversion of raw data to the international δ Cl scale. The currently available calibration standards for tetrachloroethylene (PCE) span only a very narrow range from -2.
View Article and Find Full Text PDFGlyphosate (N-phosphonomethylglycine; GLP) and its main metabolite AMPA (aminomethylphosphonic acid), are frequently detected in relatively high concentrations in European agricultural topsoils. Glyphosate has a high sorption affinity, yet it can be detected occasionally in groundwater. We hypothesized that shrinkage cracks occurring after dry periods could facilitate GLP transport to greater depths where subsoil conditions slow further microbial degradation.
View Article and Find Full Text PDFWe present field data on the effects of heavy rainfall after drought on the mobility of glyphosate and redox conditions in a clayey floodplain soil. By applying glyphosate together with deuterated water as conservative tracer in combination with time resolved redox potential measurements, the spatial and temporal patterns of water infiltration and pesticide transport as well as the concomitant changes of the redox conditions were revealed. Our findings demonstrate that shrinkage cracks in dry soils can serve as effective transport paths for atmospheric oxygen, water and glyphosate.
View Article and Find Full Text PDFBackground: Analytical constraints complicate environmental monitoring campaigns of the herbicide glyphosate and its major degradation product aminomethylphosphonic acid (AMPA): their strong sorption to soil minerals requires harsh extraction conditions. Coextracted matrix compounds impair downstream analysis and must be removed before analysis.
Results: A new extraction method combined with subsequent capillary electrophoresis-mass spectrometry for derivatization-free analysis of glyphosate and AMPA in soil and sediment was developed and applied to a suite of environmental samples.
Mn(II)-catalyzed oxidation by molecular oxygen is considered a relevant process for the environmental fate of aminopolyphosphonate chelating agents such as aminotrismethylene phosphonate (ATMP). However, the potential roles of Mn(III)ATMP-species in the underlying transformation mechanisms are not fully understood. We combined kinetic studies, compound-specific stable carbon isotope analysis, and equilibrium speciation modeling to shed light on the significance of such Mn-ATMP species for the overall ATMP oxidation by molecular oxygen.
View Article and Find Full Text PDFTrends Biotechnol
April 2022
Geobatteries are redox-active substances that can take up, store, and release electrons reversibly. Provided that their redox activity can be maintained by fluctuations of oxidizing and reducing redox conditions, geobatteries could also improve the performance of engineered systems, such as in biological nitrogen removal from wastewater or constructed wetlands.
View Article and Find Full Text PDFThe mechanism of long-distance electron transfer via redox-active particulate natural organic matter (NOM) is still unclear, especially considering its aggregated nature and the resulting low diffusivity of its quinone- and hydroquinone-containing molecules. Here we conducted microbial iron(III) mineral reduction experiments in which anthraquinone-2,6-disulfonate (AQDS, a widely used analogue for quinone- and hydroquinone-containing molecules in NOM) was immobilized in agar to achieve a spatial separation between the iron-reducing bacteria and ferrihydrite mineral. Immobilizing AQDS in agar also limited its diffusion, which resembled electron-transfer behavior of quinone- and hydroquinone-containing molecules in particulate NOM.
View Article and Find Full Text PDFBiochar (BC) has been shown to influence microbial denitrification and mitigate soil N2O emissions. However, it is unclear if BC is able to directly stimulate the microbial reduction of N2O to N2. We hypothesized that the ability of BC to lower N2O emissions could be related not only to its ability to store electrons, but to donate them to bacteria that enzymatically reduce N2O.
View Article and Find Full Text PDFIn this study, we developed and validated a CE-TOF-MS method for the quantification of glyphosate (N-(phosphonomethyl)glycine) and its major degradation product aminomethylphosphonic acid (AMPA) in different samples including beer, media from toxicological analysis with Daphnia magna, and sorption experiments. Using a background electrolyte (BGE) of very low pH, where glyphosate is still negatively charged but many matrix components become neutral or protonated, a very high separation selectivity was reached. The presence of inorganic salts in the sample was advantageous with regard to preconcentration via transient isotachophoresis.
View Article and Find Full Text PDFRedox-active organic molecules such as anthraquinone-2,6-disulfonate (AQDS) and natural organic matter (NOM) can act as electron shuttles thus facilitating electron transfer from Fe(III)-reducing bacteria (FeRB) to terminal electron acceptors such as Fe(III) minerals. In this research, we examined the length scale over which this electron shuttling can occur. We present results from agar-solidified experimental incubations, containing either AQDS or NOM, where FeRB were physically separated from ferrihydrite or goethite by 2 cm.
View Article and Find Full Text PDFNatural organic matter and humic substances (HS) in soils and sediments participate in numerous biogeochemical processes. Sorption to redox-inert aluminum oxide (AlO) was recently found to affect the redox properties of HS both in sorbed and dissolved state. With this study, we aim to decipher the molecular basis for these observations by applying Fourier transform ion cyclotron resonance mass spectrometry (FT-ICRMS) and mediated electrochemical analysis to Elliott soil, Pahokee peat, and Suwannee river humic acid (HA) samples before and after sorption to polar AlO and a nonpolar sorbent (DAX-8 resin).
View Article and Find Full Text PDFKinetic isotope effects have been used successfully to prove and characterize organic contaminant transformation on various scales including field and laboratory studies. For tetrachloroethene (PCE) biotransformation, however, causes for the substantial variability of reported isotope enrichment factors (ε) are still not deciphered (ε = -0.4 to -19.
View Article and Find Full Text PDFCompound-specific carbon isotope analysis (carbon CSIA) by liquid chromatography/isotope ratio mass spectrometry (LC-IRMS) is a novel and promising tool to elucidate the environmental fate of polar organic compounds such as polyphosphonates, strong complexing agents for di- and trivalent cations with growing commercial importance over the last decades. Here, we present a LC-IRMS method for the three widely used polyphosphonates 1-hydroxyethane 1,1-diphosphonate (HEDP), amino tris(methylenephosphonate) (ATMP), and ethylenediamine tetra(methylenephosphonate) (EDTMP). Separation of the analytes, as well as ATMP and its degradation products, was carried out on an anion exchange column under acidic conditions.
View Article and Find Full Text PDFHumic substances (HSs) are important electron acceptors and donors in soils and aquifers. The coupling of anoxic nitrogen (N) cycling to the function of HSs as a redox battery, however, remains poorly understood. Mediated electrochemical analysis is an emerging tool to determine the redox properties (i.
View Article and Find Full Text PDFEnviron Sci Technol
December 2019
Natural organic matter (NOM) is an important redox-active component of natural porous media and predominantly occurs in the sorbed state. Nevertheless, the effects of NOM sorption at minerals on its redox properties are unknown and thus are the major objective of this study. We report how adsorption of three different humic acids (HAs) to redox-inert sorbents (polar AlO and nonpolar DAX-8 resin) affects their electron-exchange capacities (EEC) and redox states.
View Article and Find Full Text PDFThis article documents the new precipitates formed related to acid mine drainage (AMD) at Dabaoshan mine (South China). X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope & Energy Spectrometer (SEM-EDS) have been used to detect minerals in AMD impoundment and downstream creeks. The occurrences, the mineralogical species and the micro-morphological characteristics of secondary minerals from different pH conditions has been carried out.
View Article and Find Full Text PDF