Publications by authors named "Haden L Scott"

Cell membranes are responsible for a range of biological processes that require interactions between lipids and proteins. While the effects of lipids on proteins are becoming better understood, our knowledge of how protein conformational changes influence membrane dynamics remains rudimentary. Here, we performed experiments and computer simulations to study the dynamic response of a lipid membrane to changes in the conformational state of pH-low insertion peptide (pHLIP), which transitions from a surface-associated (SA) state at neutral or basic pH to a transmembrane (TM) α-helix under acidic conditions.

View Article and Find Full Text PDF

Phospholipid bilayers can be described as capacitors whose capacitance per unit area (specific capacitance, ) is determined by their thickness and dielectric constant─independent of applied voltage. It is also widely assumed that the of membranes can be treated as a "biological constant". Recently, using droplet interface bilayers (DIBs), it was shown that zwitterionic phosphatidylcholine (PC) lipid bilayers can act as voltage-dependent, nonlinear memory capacitors, or memcapacitors.

View Article and Find Full Text PDF

Abstract: In biology, heterosynaptic plasticity maintains homeostasis in synaptic inputs during associative learning and memory, and initiates long-term changes in synaptic strengths that nonspecifically modulate different synapse types. In bioinspired neuromorphic circuits, heterosynaptic plasticity may be used to extend the functionality of two-terminal, biomimetic memristors. In this article, we explore how changes in the pH of droplet interface bilayer aqueous solutions modulate the memristive responses of a lipid bilayer membrane in the pH range 4.

View Article and Find Full Text PDF

For the past 50 years, evidence for the existence of functional lipid domains has been steadily accumulating. Although the notion of functional lipid domains, also known as "lipid rafts," is now widely accepted, this was not always the case. This ambiguity surrounding lipid domains could be partly attributed to the fact that they are highly dynamic, nanoscopic structures.

View Article and Find Full Text PDF

Cryogenic electron microscopy (cryo-EM) is among the most powerful tools available for interrogating nanoscale structure of biological materials. We recently showed that cryo-EM can be used to measure the bilayer thickness of lipid vesicles and biological membranes with subangstrom precision, resulting in the direct visualization of nanoscopic domains of different thickness in multicomponent lipid mixtures and giant plasma membrane vesicles. Despite the great potential of cryo-EM for revealing the lateral organization of biomembranes, a large parameter space of experimental conditions remains to be optimized.

View Article and Find Full Text PDF

The amount of water in therapeutic nanoparticles (NPs) is of great importance to the pharmaceutical industry, as water content reflects the volume occupied by the solid components. For example, certain biomolecules, such as mRNA, can undergo conformational change or degradation when exposed to water. Using static light scattering (SLS) and dynamic light scattering (DLS), we estimated the water content of NPs, including extruded liposomes of two different sizes and polystyrene (PS) Latex NPs.

View Article and Find Full Text PDF

Biological supramolecular assemblies, such as phospholipid bilayer membranes, have been used to demonstrate signal processing via short-term synaptic plasticity (STP) in the form of paired pulse facilitation and depression, emulating the brain's efficiency and flexible cognitive capabilities. However, STP memory in lipid bilayers is volatile and cannot be stored or accessed over relevant periods of time, a key requirement for learning. Using droplet interface bilayers (DIBs) composed of lipids, water and hexadecane, and an electrical stimulation training protocol featuring repetitive sinusoidal voltage cycling, we show that DIBs displaying memcapacitive properties can also exhibit persistent synaptic plasticity in the form of long-term potentiation (LTP) associated with capacitive energy storage in the phospholipid bilayer.

View Article and Find Full Text PDF

We report the real-time response of to lactoferricin-derived antimicrobial peptides (AMPs) on length scales bridging microscopic cell sizes to nanoscopic lipid packing using millisecond time-resolved synchrotron small-angle X-ray scattering. Coupling a multiscale scattering data analysis to biophysical assays for peptide partitioning revealed that the AMPs rapidly permeabilize the cytosolic membrane within less than 3 s-much faster than previously considered. Final intracellular AMP concentrations of ∼80-100 mM suggest an efficient obstruction of physiologically important processes as the primary cause of bacterial killing.

View Article and Find Full Text PDF

We addressed the frequent occurrence of mixed-chain lipids in biological membranes and their impact on membrane structure by studying several chain-asymmetric phosphatidylcholines and the highly asymmetric milk sphingomyelin. Specifically, we report trans-membrane structures of the corresponding fluid lamellar phases using small-angle X-ray and neutron scattering, which were jointly analyzed in terms of a membrane composition-specific model, including a headgroup hydration shell. Focusing on terminal methyl groups at the bilayer center, we found a linear relation between hydrocarbon chain length mismatch and the methyl-overlap for phosphatidylcholines, and a non-negligible impact of the glycerol backbone-tilting, letting the -chain penetrate deeper into the opposing leaflet by half a CH group.

View Article and Find Full Text PDF

It is well known that the lipid distribution in the bilayer leaflets of mammalian plasma membranes (PMs) is not symmetric. Despite this, model membrane studies have largely relied on chemically symmetric model membranes for the study of lipid-lipid and lipid-protein interactions. This is primarily due to the difficulty in preparing stable, asymmetric model membranes that are amenable to biophysical studies.

View Article and Find Full Text PDF

We studied the transleaflet coupling of compositionally asymmetric liposomes in the fluid phase. The vesicles were produced by cyclodextrin-mediated lipid exchange and contained dipalmitoyl phosphatidylcholine (DPPC) in the inner leaflet and different mixed-chain phosphatidylcholines (PCs) as well as milk sphingomyelin (MSM) in the outer leaflet. In order to jointly analyze the obtained small-angle neutron and X-ray scattering data, we adapted existing models of trans-bilayer structures to measure the overlap of the hydrocarbon chain termini by exploiting the contrast of the terminal methyl ends in X-ray scattering.

View Article and Find Full Text PDF

Differential scanning calorimetry (DSC) of dipalmitoyl phosphatidylcholine (DPPC), dihexanoyl phosphatidylcholine, and dipalmitoyl phosphatidylglycerol bicelles reveals two endothermic peaks. Based on analysis of small angle neutron scattering and small angle X-ray scattering data, the two DSC peaks are associated with the melting of DPPC and a change in bicellar morphology─namely, either bicelle-to-spherical vesicle or oblate-to-spherical vesicle. The reversibility of the two structural transformations was examined by DSC and found to be consistent with the corresponding small angle scattering data.

View Article and Find Full Text PDF

Cell membranes and their associated structures are dynamical supramolecular structures where different physiological processes take place. Detailed knowledge of their static and dynamic structures is therefore needed, to better understand membrane biology. The structure-function relationship is a basic tenet in biology and has been pursued using a range of different experimental approaches.

View Article and Find Full Text PDF

A previously reported multi-scale model for (ultra-)small-angle X-ray (USAXS/SAXS) and (very) small-angle neutron scattering (VSANS/SANS) of live was revised on the basis of compositional/metabolomic and ultrastructural constraints. The cellular body is modeled, as previously described, by an ellipsoid with multiple shells. However, scattering originating from flagella was replaced by a term accounting for the oligosaccharide cores of the lipopolysaccharide leaflet of the outer membrane including its cross-term with the cellular body.

View Article and Find Full Text PDF

Förster resonance energy transfer (FRET) is a powerful tool for investigating heterogeneity in lipid bilayers. In model membrane studies, samples are frequently unilamellar vesicles with diameters of 20-200 nm. It is well-known that FRET efficiency is insensitive to vesicle curvature in uniformly mixed lipid bilayers, and consequently theoretical models for FRET typically assume a planar geometry.

View Article and Find Full Text PDF

Cholesterol is an integral component of eukaryotic cell membranes and a key molecule in controlling membrane fluidity, organization, and other physicochemical parameters. It also plays a regulatory function in antibiotic drug resistance and the immune response of cells against viruses, by stabilizing the membrane against structural damage. While it is well understood that, structurally, cholesterol exhibits a densification effect on fluid lipid membranes, its effects on membrane bending rigidity are assumed to be nonuniversal; i.

View Article and Find Full Text PDF

The nanoscale organization of biological membranes into structurally and compositionally distinct lateral domains is believed to be central to membrane function. The nature of this organization has remained elusive due to a lack of methods to directly probe nanoscopic membrane features. We show here that cryogenic electron microscopy (cryo-EM) can be used to directly image coexisting nanoscopic domains in synthetic and bioderived membranes without extrinsic probes.

View Article and Find Full Text PDF

We have determined the fluid bilayer structure of palmitoyl sphingomyelin (PSM) and stearoyl sphingomyelin (SSM) by simultaneously analyzing small-angle neutron and X-ray scattering data. Using a newly developed scattering density profile (SDP) model for sphingomyelin lipids, we report structural parameters including the area per lipid, total bilayer thickness, and hydrocarbon thickness, in addition to lipid volumes determined by densitometry. Unconstrained all-atom simulations of PSM bilayers at 55 °C using the C36 CHARMM force field produced a lipid area of 56 Å, a value that is 10% lower than the one determined experimentally by SDP analysis (61.

View Article and Find Full Text PDF

Extrusion through porous filters is a widely used method for preparing biomimetic model membranes. Of primary importance in this approach is the efficient production of single bilayer (unilamellar) vesicles that eliminate the influence of interlamellar interactions and strictly define the bilayer surface area available to external reagents such as proteins. Submicroscopic vesicles produced using extrusion are widely assumed to be unilamellar, and large deviations from this assumption would impact interpretations from many model membrane experiments.

View Article and Find Full Text PDF

The pH-low insertion peptide (pHLIP) is used for targeted delivery of drug cargoes to acidic tissues such as tumors. The extracellular acidosis found in solid tumors triggers pHLIP to transition from a membrane-adsorbed state to fold into a transmembrane α-helix. Different factors influence the acidity required for pHLIP to insert into lipid membranes.

View Article and Find Full Text PDF

Despite the prevalence of lipid transbilayer asymmetry in natural plasma membranes, most biomimetic model membranes studied are symmetric. Recent advances have helped to overcome the difficulties in preparing asymmetric liposomes in vitro, allowing for the examination of a larger set of relevant biophysical questions. Here, we investigate the stability of asymmetric bilayers by measuring lipid flip-flop with time-resolved small-angle neutron scattering (SANS).

View Article and Find Full Text PDF

The plasma membrane (PM) contains an asymmetric distribution of lipids between the inner and outer bilayer leaflets. A lipid of special interest in eukaryotic membranes is the negatively charged phosphatidylserine (PS). In healthy cells, PS is actively sequestered to the inner leaflet of the PM, but PS redistributes to the outer leaflet when the cell is damaged or at the onset of apoptosis.

View Article and Find Full Text PDF

The pH-low insertion peptide (pHLIP) is a leading peptide technology to target the extracellular acidosis that characterizes solid tumors. The pHLIP binds to lipid membranes, and responds to acidification by undergoing a coupled folding/membrane insertion process. In the final transmembrane state, the C terminus of pHLIP gets exposed to the cytoplasm of the target cell, providing a means to translocate membrane-impermeable drug cargoes across the plasma membrane of cancer cells.

View Article and Find Full Text PDF

Several diseases, such as cancer, are characterized by acidification of the extracellular environment. Acidosis can be employed as a target to specifically direct therapies to the diseased tissue. We have used first principles to design an acidity-triggered rational membrane (ATRAM) peptide with high solubility in solution that is able to interact with lipid membranes in a pH-dependent fashion.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionc6070uv0g31napbrc4khecpflujq7vfd): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once