Indigenous chickens are an important Farm Animal Genetic Resource (FAnGR) in South Africa as they alleviate poverty and are a source of protein. Climate change and market demand for high-performing exotic breeds threaten and undermine locally adapted village chickens. The current study explored the risk status and signatures of adaptation of village-based indigenous chickens from two provinces and mapped their environmental suitability across the country.
View Article and Find Full Text PDFSelection pressures found in the prevailing production environments have shaped the genetic structure of indigenous chickens we see today. Indigenous chickens, raised in villages, provide essential genetic resources and income for poverty alleviation by providing affordable protein. However, they are threatened by predators, emerging diseases, and market demand for ideal breeds and fast production which causes loss of their valuable traits.
View Article and Find Full Text PDFSouth Africa boasts a diverse range of pig populations, encompassing intensively raised commercial breeds, as well as indigenous and village pigs reared under low-input production systems. The aim of this study was to investigate how natural and artificial selection have shaped the genomic landscape of South African pig populations sampled from different genetic backgrounds and production systems. For this purpose, the integrated haplotype score (iHS), as well as cross population extended haplotype homozygosity (XP-EHH) and Lewontin and Krakauer's extension of the statistic based on haplotype information (HapFLK) were utilised.
View Article and Find Full Text PDFGoats were amongst the first livestock to be domesticated more than 10,000 years ago for their meat, milk, skin, and fiber. They were introduced to Southern Africa by migrating nations from Central Africa to the south. Due to local adaptation to the different agro-ecological zones and selection, indigenous goats are identified as ecotypes within the indigenous veld goat breed.
View Article and Find Full Text PDFIndigenous goats form the majority of populations in smallholder, low input, low output production systems and are considered an important genetic resource due to their adaptability to different production environments and support of communal farming. Effective population size ( ), inbreeding levels, and the runs of homozygosity (ROHs) are effective tools for exploring the genetic diversity and understanding the demographic history in efforts to support breeding strategies to use and conserve genetic resources. Across populations, the current of Gauteng was the lowest at 371 animals, while the historical across populations suggests that the ancestor has decreased by 53.
View Article and Find Full Text PDFNguni cattle are a Sanga type breed with mixed and ancestry and proven resistance to ticks, diseases and other harsh conditions of the African geographical landscape. The multi-coloured Nguni coats have found a niche market in the leather industry leading to breeding objectives towards the promotion of such diversity. However, there is limited studies on the genomic architecture underlying the coat colour and patterns hampering any potential breeding and improvement of such trait.
View Article and Find Full Text PDFIn this study, runs of homozygosity (ROH) and quantitative trait locus/association (QTL) for semen parameters in selected Chinese and South African beef cattle breed were estimated. The computed results showed 7516 ROH were observed between classes 0−5 Mb with no ROH observed in classes >40 Mb. Distribution of ROH showed high level of genomic coverage for ANG, NGU, CSI, and BEL breeds.
View Article and Find Full Text PDFCarcass quality includes a battery of essential economic meat traits that play a significant role in influencing farmer breed preferences. A preliminary study was undertaken to investigate the carcass quality and the associated genomic regions in a small nucleus of animals that are representative of South African goat genetic resources. Samples of the South African Boer ( 14), Northern Cape Speckled ( 14), Eastern Cape Xhosa Lob ear ( 12), Nguni/Mbuzi ( 13), and Village ( 20) were genotyped using the Illumina goat SNP50K and were phenotyped for carcass quality traits.
View Article and Find Full Text PDFIn this study, we evaluated an admixed South African Simbra crossbred population, as well as the Brahman (Indicine) and Simmental (Taurine) ancestor populations to understand their genetic architecture and detect genomic regions showing signatures of selection. Animals were genotyped using the Illumina BovineLD v2 BeadChip (7K). Genomic structure analysis confirmed that the South African Simbra cattle have an admixed genome, composed of 5/8 Taurine and 3/8 Indicine, ensuring that the Simbra genome maintains favorable traits from both breeds.
View Article and Find Full Text PDFGenetic diversity is of great importance and a prerequisite for genetic improvement and conservation programs in pigs and other livestock populations. The present study provides a genome wide analysis of the genetic variability and population structure of pig populations from different production systems in South Africa relative to global populations. A total of 234 pigs sampled in South Africa and consisting of village ( = 91), commercial ( = 60), indigenous ( = 40), Asian ( = 5) and wild ( = 38) populations were genotyped using Porcine SNP60K BeadChip.
View Article and Find Full Text PDFGoats play a major role in poor marginalized communities of South Africa for food security and socio-economic purposes. Majority of the goats are raised in villages with poor infrastructure and resources, therefore facing challenges that affect growth performance which leads to low mature weights. Investigating growth profiles will shed light on growth performances and will aid in goat improvement and selection.
View Article and Find Full Text PDF