Publications by authors named "Hadas Mamane"

Biofilms have been widely detected in water distribution and water storage systems posing potential risks to drinking water safety by harboring and shedding pathogens. Light-based disinfection methods, such as germicidal ultraviolet (UV) and antimicrobial blue light (aBL), could serve as non-chemical alternatives for biofilm control. This study investigated the inactivation of pure-culture Pseudomonas aeruginosa biofilms and mixed-culture biofilms using three distinct light-based disinfection methods: a low-pressure (LP) UV lamp emitting at 254 nm, a UV light emitting diode (LED) at 270 nm, and an aBL LED at 405 nm.

View Article and Find Full Text PDF

Emerging pollutants and a large volume of unused dyes from the textile industry have been contaminating water bodies. This work introduces a scalable approach to purifying water by the adsorption of Acid green 25 (AG), Crystal Violet (CV), and Sulfamethoxazole (SMA) from an aqueous solution by graphene oxide (GO) doped modified silica aerogel (GO-SA) with supercritical fluid deposition (SFD) method. Characterization of GO-SA using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), high-resolution scanning electron microscopy (HR-SEM), thermogravimetric analysis (TGA), and Brunauer-Emmett-Teller (BET) adsorption isotherms revealed the improvement in the adsorbent surface area, and its textural properties.

View Article and Find Full Text PDF

UV irradiation is an efficient tool for the disinfection of viruses in general and coronavirus specifically. This study explores the disinfection kinetics of SARS-CoV-2 variants wild type (similar to the Wuhan strain) and three variants (Alpha, Delta, and Omicron) by 267 nm UV-LED. All variants showed more than 5 logs average reduction in copy number at 5 mJ/cm but inconsistency was evident, especially for the Alpha variant.

View Article and Find Full Text PDF

At least 2 billion people worldwide use drinking water sources that are contaminated with feces, causing waterborne diseases; poor sanitation, poor hygiene, and unsafe drinking water result in a daily death rate of more than 800 children under 5 years of age from diarrheal diseases. This study shows the feasibility of a novel method to nowcast fecal coliforms' (FC) presence in drinking water sources by applying a multilayer perceptron artificial neuron network (MLP-ANN) model. The model gives a binary answer for FC presence or absence in drinking water sources using a minimum of water quality and geographical parameters, which can be monitored in real-time as predictors with low-cost and in-situ equipment.

View Article and Find Full Text PDF

Antimicrobial and self-cleaning surface coatings are promising tools to combat the growing global threat of infectious diseases and related healthcare-associated infections (HAIs). Although many engineered TiO-based coating technologies are reporting antibacterial performance, the antiviral performance of these coatings has not been explored. Furthermore, previous studies have underscored the importance of the "transparency" of the coating for surfaces such as the touch screens of medical devices.

View Article and Find Full Text PDF

Uridine contains the chromophore uracil, a base forming part of RNA. In the range 240-290 nm, the absorption spectra of uridine and DNA are very similar and correspond to the spectral inactivation sensitivity of almost all microorganisms. This makes the uridine (absorption maximum 262 nm) an ideal actinometer for determining the germicidal photon flux in the range of 240 to 290 nm.

View Article and Find Full Text PDF

We evaluated the removal capacity of a coupled microalgal-bacterial biofilm (CMBB) to eliminate three recalcitrant pharmaceuticals. The CMBB's efficiency, operating at different biofilm concentrations, with or without light, was compared and analyzed to correlate these parameters to pharmaceutical removal and their effect on the microorganism community. Removal rates changed with changing pharmaceutical and biofilm concentrations: higher biofilm concentrations presented higher removal.

View Article and Find Full Text PDF

Here, we propose a low-cost, sustainable, and viable adsorbent (pine tree-derived biochar) to remove acid dyes such as acid violet 17 (AV), which is used in the silk dyeing industry. As a case study, the AV removal process was demonstrated using synthetic effluent and further as a proof of concept using real dye effluent produced from the Sirumugai textile unit in India. The pine tree-derived biochar was selected for removal of aqueous AV dye in batch and fixed-bed column studies.

View Article and Find Full Text PDF

Degradation of 17α-ethynylestradiol (EE2) and estrogenicity were examined in a novel oxidative bioreactor (OBR) that combines small bioreactor platform (SBP) capsules and UV-LED (ultraviolet light emission diode) simultaneously, using enriched water and secondary effluent. Preliminary experiments examined three UV-LED wavelengths-267, 279, and 286 nm, with (indirect photolysis) and without (direct photolysis) HO. The major degradation wavelength for both direct and indirect photolysis was 279 nm, while the major removal gap for direct vs.

View Article and Find Full Text PDF

Actinometers are physical or chemical systems that can be employed to determine photon fluxes. Chemical actinometers are photochemical systems with known quantum yields that can be employed to determine accurate photon fluxes for specific photochemical reactions. This review explores in detail several practical chemical actinometers (ferrioxalate, iodide-iodate, uranyl oxalate, nitrate, uridine, hydrogen peroxide and several actinometers for the vacuum ultraviolet).

View Article and Find Full Text PDF

Ultraviolet (UV) disinfection efficiency by low-pressure (LP) mercury lamp depends on the UV fluence (dose): the product of incident irradiance (fluence rate) and exposure time, with correction factors. Time-dose reciprocity may not always apply, as higher UV-LP inactivation of E. coli was obtained at a higher irradiance over shorter exposure time, for the same UV fluence.

View Article and Find Full Text PDF

UV light-emitting diodes (UV LEDs) are an emerging technology and a UV source for pathogen inactivation, however low UV-LED wavelengths are costly and have low fluence rate. Our results suggest that the sensitivity of human Coronavirus (HCoV-OC43 used as SARS-CoV-2 surrogate) was wavelength dependent with 267 nm ~ 279 nm > 286 nm > 297 nm. Other viruses showed similar results, suggesting UV LED with peak emission at ~286 nm could serve as an effective tool in the fight against human Coronaviruses.

View Article and Find Full Text PDF

Metal-free, chemically activated crystalline graphitic carbon nitride (g-CN) nanorods with enhanced visible-light photoactivity demonstrated rapid photodegradation of 17α-ethinylestradiol (EE2) in water and real hospital wastewater. Pure g-CN and another three crystalline promoted g-CN photocatalysts developed by hydrothermal method were characterized by, High-Resolution Transmission Electron Microscopy (HRTEM), X-ray diffraction (XRD), Fourier-Transform Infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET), Photoluminescence (PL), Electron spin resonance (ESR), X-ray Photoelectron Spectroscopy (XPS) and Diffuse Reflectance Spectroscopy (DRS). Hydrothermal-based chemical activation did not alter the crystal structure, functional group or surface morphology, but it enhanced the specific surface area of activated g-CN due to intralayer delamination and depolymerization of g-CN.

View Article and Find Full Text PDF

Advanced technologies, such as reverse osmosis (RO), allow the reuse of treated wastewater for direct or indirect potable use. However, even highly efficient RO systems produce ~10-15% highly contaminated concentrate as a byproduct. This wastewater RO concentrate (WWROC) is very rich in metal ions, nutrients, and hard-to-degrade trace organic compounds (TOrCs), such as pharmaceuticals, plasticizers, flame retardants, and detergents, which must be treated before disposal.

View Article and Find Full Text PDF

UV light-emitting diodes (UV-LEDs) have emerged as a new technology for water disinfection. Multiwell plates are a common tool in biological research, but they have never been used for UVC/UVB-inactivation experiments of microorganisms. In this study, a novel, rapid and simple UVC/UVB-inactivation assay was developed for a UV-LED system using a multiwell plate setup (96- and 24-well plates).

View Article and Find Full Text PDF

A successful attempt to degrade synthetic estrogen 17α-ethynylestradiol (EE2) is demonstrated via combining photocatalysis employing magnesium peroxide (MgO)/low-pressure ultraviolet (LP-UV) treatment followed by biological treatment using small bioreactor platform (SBP) capsules. Reusable MgO was synthesized through wet chemical synthesis and extensively characterized by X-ray diffraction (XRD) for phase confirmation, X-ray photoelectron spectroscopy (XPS) for elemental composition, Brunauer-Emmett-Teller (BET) to explain a specific surface area, scanning electron microscopy (SEM) imaging surface morphology, and UV-visible (Vis) spectrophotometry. The degradation mechanism of EE2 by MgO/LP-UV consisted of LP-UV photolysis of HO in situ (produced by the catalyst under ambient conditions) to generate hydroxyl radicals, and the degradation extent depended on both MgO and UV dose.

View Article and Find Full Text PDF

Plastic products in municipal solid waste result in the extraction of phthalates in leachate that also contains large amounts of organic matter, such as humic substances, ammonia, metals, chlorinated organics, phenolic compounds, and pesticide residues. Phthalate esters are endocrine disruptors, categorized as a priority pollutant by the US Environmental Protection Agency (USEPA). Biological processes are inefficient at degrading phthalates due to their stability and toxic characteristics.

View Article and Find Full Text PDF

Hydrophobic aerogels were used to remove three types of persistent organic pollutants: pharmaceutical drugs (i.e. doxorubicin [DOX], paclitaxel [TAX]), phthalates (diethyl phthalate [DEP]), and hydrophilic rhodamine dye (RhB) from synthetic and real wastewaters, using Lumira granular aerogel from Cabot activated with EtOH (ET-GAG).

View Article and Find Full Text PDF

Herein, we demonstrate the fabrication of Bi(0)-doped bismuth oxyhalide solid solution films for the removal of trace organic pollutants (TrOPs) in water. With the advantage of a viscous AlOOH sol, very high loadings (75 wt %) of bismuth oxyhalides were embedded within the thin films and calcined at 500 °C to develop porous alumina composite coatings. Various concentrations of Bi(0) doping were tested for their photocatalytic activity.

View Article and Find Full Text PDF

Today, two types of lamp systems dominate the UV disinfection industry: low-pressure (LP) UV lamps and medium-pressure (MP) polychromatic lamps. Both lamp types have their advantages and disadvantages in microorganism inactivation, with LP lamps being cheaper, having longer life, and working at lower temperature, hence reducing fouling, and MP lamps showing better inactivation per germicidal dose for certain microorganisms. Bacterium-based biosensors were used to compare LP and MP irradiation.

View Article and Find Full Text PDF

Nanocellulose (NC) have garnered much interest worldwide due to its physical and chemical properties. Nanocellulose is produced from biomass materials by bleaching pretreatment, followed by acid hydrolysis. This work demonstrated the production of NC from recycled paper sludge (RPS), a crystalline cellulose rich waste, by ozonation pretreatment, followed by maleic acid hydrolysis.

View Article and Find Full Text PDF

Soil columns simulating soil aquifer treatment (SAT), fed with synthetic secondary effluent by intermittent infiltration of flooding/drying cycles, were characterized for nitrogen and organic carbon removal, and microbial ecology and biokinetics. The columns differed in the concentration ratio of chemical oxygen demand (COD) to the summed NH, NO and organic nitrogen-2 (C/N2) or 5 (C/N5). Chemical profiles along the column demonstrated a preference for COD oxidation over nitrification and coupled denitrification, with higher nitrogen loss (57% vs.

View Article and Find Full Text PDF

Recent studies have shown the efficiency of hydroxyl radicals generated via ultraviolet (UV)-based advanced oxidation processes (AOPs) combined with hydrogen peroxide (UV/HO) as a treatment process in water. The effects of AOP treatments on bacterial gene expression was examined using Pseudomonas aeruginosa strain PAO1 as a model-organism bacterium. Many bacterial genes are not expressed all the time, but their expression is regulated.

View Article and Find Full Text PDF

While ozonation is considered an efficient treatment to eliminate trace organic compounds (TrOCs) from secondary wastewater effluents, the presence and persistence of transformation products (TPs) resulting from ozonation of TrOCs is a major concern that should be assessed prior to effluent discharge to the environment. Venlafaxine (VLX), an environmentally relevant tertiary amine-containing TrOC, was chosen as the model for this study. TP analysis confirmed that the lone electron pair of the non-protonated amine are the predominant site of oxidant attack, and therefore strongly affected by pH value and VLX speciation.

View Article and Find Full Text PDF