We investigate the transformation of single crystal gold nanorod surface morphology over extended growth times. After initial rapid anisotropic growth and disappearance of {111} bridging facets, the aspect ratios converge across AgNO concentrations. The surface morphology transitions from faceted to curved.
View Article and Find Full Text PDFThe phenomenon of symmetry breaking-in which the order of symmetry of a system is reduced despite manifest higher-order symmetry in the underlying fundamental laws-is pervasive throughout science and nature, playing a critical role in fields ranging from particle physics and quantum theory to cosmology and general relativity. For the growth of crystals, symmetry breaking is the crucial step required to generate a macroscopic shape that has fewer symmetry elements than the unit cell and/or seed crystal from which it grew. Advances in colloid synthesis have enabled a wide variety of nanocrystal morphologies to be achieved, albeit empirically.
View Article and Find Full Text PDFMetal nanocrystals can be grown in a variety of shapes through the modification of surface facet energies via surfactants. However, the surface facets are only a few atoms wide, making it extremely challenging to measure their geometries and energies. Here, we locate and count atoms in Au nanorods at successive time intervals using quantitative scanning transmission electron microscopy.
View Article and Find Full Text PDFQuantitative analysis of lattice resolved images generated by scanning transmission electron microscopy (STEM) requires specification of probe characteristics, such as defocus, aberration and source distribution. In this paper we show that knowledge of such characteristics is unnecessary for quantitative interpretation, if the signal is integrated over a unit cell. Such a condition, whether the result of experimental setup or post-processing of lattice resolved images, reduces the intensity distribution to that of channelling contrast, where the signal for plane wave incidence is averaged over the angular range of the probe, and the result is independent of the probe characteristics.
View Article and Find Full Text PDFA method to measure the thickness of a single-crystal nanoparticle in the direction parallel to the incident beam from annular dark field scanning transmission electron microscope (ADF-STEM) images is reported, providing a map of thickness versus position across the nanoparticle--a 'thickness profile' image. The method is rapid and hence suitable for surveying large numbers of nanoparticles. The method measures the intensity scattered to a characterised ADF detector and compares this to the incident beam intensity, to obtain a normalized ADF image.
View Article and Find Full Text PDFWe determine the three-dimensional shape, to within 1 nm resolution, of single-crystal gold nanorods grown in the presence of silver ions using electron tomography and thickness profile measurements. We find that, contrary to the current literature, the octagonal side-facets are sparsely packed atomic planes all belonging to the same symmetry-equivalent family, {0 5 12}. Furthermore, the rod ends terminate in a pyramid with slightly different facets, and each pyramid is connected to the sides by four small {0 5 12} "bridging" facets.
View Article and Find Full Text PDF