Publications by authors named "Hadar Shema"

The observation of spin-dependent transmission of electrons through chiral molecules has led to the discovery of chiral-induced spin selectivity (CISS). The remarkably high efficiency of the spin polarizing effect has recently gained substantial interest due to the high potential for future sustainable hybrid chiral molecule magnetic applications. However, the fundamental mechanisms underlying the chiral-induced phenomena remain to be understood fully.

View Article and Find Full Text PDF

The incorporation of organic self-assembled monolayers (SAMs) in microelectronic devices requires precise spatial control over the self-assembly process. In this work, selective deposition of N-heterocyclic carbenes (NHCs) on specific electrodes within a two-microelectrode array is achieved by using pulsed electrodeposition. Spectroscopic analysis of the NHC-coated electrode arrays reveals that each electrode is selectively coated with a designated NHC.

View Article and Find Full Text PDF

Analysis of the influence of dissimilar facets on the adsorption, stability, mobility, and reactivity of surface ligands is essential for designing ligand-coated nanocrystals with optimal functionality. Herein, para-nitrothiophenol and nitronaphthalene were chemisorbed and physisorbed, respectively, on Au nanocrystals, and the influence of different facets within a single Au nanocrystal on ligands properties were identified by IR nanospectroscopy measurements. Preferred adsorption was probed on (001) facets for both ligands, with a lower density on (111) facets.

View Article and Find Full Text PDF
Article Synopsis
  • Recent advancements in microscopy and spectroscopy have allowed for detailed studies of catalytic reactions, revealing that catalysts show greater variability and complexity than previously understood.
  • These techniques expose local differences in reaction mechanisms based on the unique properties and arrangement of active sites in both homogeneous and heterogeneous catalysts.
  • Case studies demonstrate the advantages of analyzing individual particles and their interactions, which provide deeper insights into reaction processes compared to traditional ensemble methods.
View Article and Find Full Text PDF

We report a precious-metal-free molecular catalyst-based photocathode that is active for aqueous CO reduction to CO and methanol. The photoelectrode is composed of cobalt phthalocyanine molecules anchored on graphene oxide which is integrated via a (3-aminopropyl)triethoxysilane linker to p-type silicon protected by a thin film of titanium dioxide. The photocathode reduces CO to CO with high selectivity at potentials as mild as 0 V versus the reversible hydrogen electrode (vs RHE).

View Article and Find Full Text PDF