Publications by authors named "Hadar Less"

Plants need to continuously adjust their transcriptome in response to various stresses that lead to inhibition of photosynthesis and the deprivation of cellular energy. This adjustment is triggered in part by a coordinated re-programming of the energy-associated transcriptome to slow down photosynthesis and activate other energy-promoting gene networks. Therefore, understanding the stress-related transcriptional networks of genes belonging to energy-associated pathways is of major importance for engineering stress tolerance.

View Article and Find Full Text PDF

The response of plants to environmental cues, particularly stresses, involves the coordinated induction or repression of gene expression. In a previous study, we developed a bioinformatics approach to analyze the mutual expression pattern of genes encoding transcription factors and metabolic enzymes upon exposure of Arabidopsis plants to abiotic and biotic stresses. The analysis resulted in three gene clusters, each displaying a unique expression pattern.

View Article and Find Full Text PDF

The expression pattern of any pair of genes may be negatively correlated, positively correlated, or not correlated at all in response to different stresses and even different progression stages of the stress. This makes it difficult to identify such relationships by classical statistical tools such as the Pearson correlation coefficient. Hence, dedicated bioinformatics approaches that are able to identify groups of cues in which there is a positive or negative expression correlation between pairs or groups of genes are called for.

View Article and Find Full Text PDF

Amino acid metabolism is among the most important and best recognized networks within biological systems. In plants, amino acids serve multiple functions associated with growth. Besides their function in protein synthesis, the amino acids are also catabolized into energy-associated metabolites as well we into numerous secondary metabolites, which are essential for plant growth and response to various stresses.

View Article and Find Full Text PDF

Background: Being sessile organisms, plants should adjust their metabolism to dynamic changes in their environment. Such adjustments need particular coordination in branched metabolic networks in which a given metabolite can be converted into multiple other metabolites via different enzymatic chains. In the present report, we developed a novel "Gene Coordination" bioinformatics approach and use it to elucidate adjustable transcriptional interactions of two branched amino acid metabolic networks in plants in response to environmental stresses, using publicly available microarray results.

View Article and Find Full Text PDF

In this study, transcriptomics and metabolomics data were integrated in order to examine the regulation of glucosinolate (GS) biosynthesis in Arabidopsis (Arabidopsis thaliana) and its interface with pathways of primary metabolism. Our genetic material for analyses were transgenic plants overexpressing members of two clades of genes (ALTERED TRYPTOPHAN REGULATION1 [ATR1]-like and MYB28-like) that regulate the aliphatic and indole GS biosynthetic pathways (AGs and IGs, respectively). We show that activity of these regulators is not restricted to the metabolic space surrounding GS biosynthesis but is tightly linked to more distal metabolic networks of primary metabolism.

View Article and Find Full Text PDF

Using a bioinformatics analysis of public Arabidopsis (Arabidopsis thaliana) microarray data, we propose here a novel regulatory program, combining transcriptional and posttranslational controls, which participate in modulating fluxes of amino acid metabolism in response to abiotic stresses. The program includes the following two components: (1) the terminal enzyme of the module, responsible for the first catabolic step of the amino acid, whose level is stimulated or repressed in response to stress cues, just-in-time when the cues arrive, principally via transcriptional regulation of its gene; and (2) the initiator enzyme of the module, whose activity is principally modulated via posttranslational allosteric feedback inhibition in response to changes in the level of the amino acid, just-in-case when it occurs in response to alteration in its catabolism or sequestration into different intracellular compartments. Our proposed regulatory program is based on bioinformatics dissection of the response of all biosynthetic and catabolic genes of seven different pathways, involved in the metabolism of 11 amino acids, to eight different abiotic stresses, as judged from modulations of their mRNA levels.

View Article and Find Full Text PDF

While the metabolic networks in developing seeds during the period of reserve accumulation have been extensively characterized, much less is known about those present during seed desiccation and subsequent germination. Here we utilized metabolite profiling, in conjunction with selective mRNA and physiological profiling to characterize Arabidopsis (Arabidopsis thaliana) seeds throughout development and germination. Seed maturation was associated with a significant reduction of most sugars, organic acids, and amino acids, suggesting their efficient incorporation into storage reserves.

View Article and Find Full Text PDF