Photoacoustics is a promising technique for in-depth imaging of biological tissues. However, the lateral resolution of photoacoustic imaging is limited by size of the optical excitation spot, and therefore by light diffraction and scattering. Several super-resolution approaches, among which methods based on localization of labels and particles, have been suggested, presenting promising but limited solutions.
View Article and Find Full Text PDFA novel method for non-contact and continuous detection of photoacoustic signals is presented and experimentally demonstrated. The approach is based on analysis of the contrast of time-varying speckle patterns, and suggests a more robust alternative in respect to interferometric and refractometric available solutions.
View Article and Find Full Text PDFHigh quality imaging through sub-millimeter endoscopic probes provides clinicians with valuable diagnostics capabilities in hard to reach locations within the body. Spectrally encoded endoscopy (SEE) has been shown promising for such task; however, challenging probe fabrication and high speckle noise had prevented its testing in in vivo studies. Here we demonstrate a novel miniature SEE probe which incorporates some of the recent progress in spectrally encoded technology into a compact and robust endoscopic system.
View Article and Find Full Text PDF