Publications by authors named "Hacksell U"

Parkinson's disease psychosis (PDP) is a condition that may develop in up to 60 % of Parkinson's patients, and is a major reason for nursing home placement for those affected. There are no FDA approved drugs for PDP but low doses of atypical anti-psychotic drugs (APDs) are commonly prescribed off-label. Only low-dose clozapine has shown efficacy in randomized controlled trials, but all APDs have black box warnings related to the increased mortality and morbidity when used in elderly demented patients.

View Article and Find Full Text PDF

No safe, tolerated, and effective treatment for Parkinson's disease psychosis (PDP) is available; however, clozapine and quetiapine are often used off-label. An ideal PDP drug should have a therapeutic window that alleviates psychotic symptoms at doses that allow for maintained motor control and do not cause sedation. The present study determined the effective doses of quetiapine, clozapine, and the nondopaminergic, selective 5-HT2A inverse agonist/antagonist, pimavanserin, in an animal model of PDP and compared them with the doses that caused dopamine blockade and sedation.

View Article and Find Full Text PDF

(-)-OSU6162 has promise for treating Parkinson's disease, Huntington's disease and schizophrenia. Behavioral tests evaluating the locomotor effects of (-) and (+)-OSU6162 on 'low activity' animals (reserpinized mice and habituated rats) and 'high activity' animals (drug naive mice and non-habituated rats) revealed that both enantiomers of OSU6162 had dual effects on behavior, stimulating locomotor activity in 'low activity' animals and inhibiting locomotor activity in 'high activity' animals. To elucidate a plausible mechanism of action for their behavioral effects, we evaluated the intrinsic actions of (-)- and (+)-OSU6162, and a collection of other antipsychotic and antiparkinsonian agents at 5-HT2A and D2 receptors in functional assays with various degrees of receptor reserve, including cellular proliferation, phosphatidyl inositol hydrolysis, GTPγS and beta-arrestin recruitment assays.

View Article and Find Full Text PDF

A series of novel isochromanone based urotensin II receptor agonists have been synthesized and evaluated for their activity using a functional cell based assay (R-SAT). Several potent and efficacious derivatives were identified, with 3-(3,4-dichlorophenyl)-6,7-dimethyl-3-(2-dimethylaminoethyl)isochroman-1-one being the most potent compound showing an EC₅₀-value of 51 nM, thereby being the most potent compound so far within the isochromanone series. In addition, two other heterocyclic systems (isochromanes and tetrahydroisoquinolinones) were investigated and these derivatives were found to be both potent and efficacious.

View Article and Find Full Text PDF

A series of analogs of the non-peptidic urotensin II receptor agonist N-[1-(4-chlorophenyl)-3-(dimethylamino)propyl]-4-phenylbenzamide (FL104) has been synthesized and evaluated pharmacologically. The enantiomers of the two most potent racemic analogues were obtained from the corresponding diastereomeric mandelic amides. In agreement with previously observed SAR, most of the agonist potency resided in the (S) enantiomers.

View Article and Find Full Text PDF

We recently discovered the isoform selective RAR beta 2 ligand 4'-octyl-4-biphenylcarboxylic acid (3, AC-55649). Although 3 is highly potent at RAR beta 2 and displays excellent selectivity, solubility issues make it unsuitable for drug development. Herein we describe the exploration of the SAR in a biphenyl and a phenylthiazole series of analogues of 3.

View Article and Find Full Text PDF

Chemical genomics is a new research paradigm with importantapplications in drug discovery. It links genomic targets withsmall-molecule chemistries thereby allowing for efficient targetvalidation and lead compound identification. ACADIA'schemical-genomics platform consists of a large and diverse small-moleculelibrary (800,000), a reference drug library (2,000), druggablegenomic targets (>300) and a cell-based functional assaytechnology (R-SAT(TM); Receptor Selection and AmplificationTechnology) that allows for ultra-high throughput screening(>500,000 data points/week) as well as high throughputpharmacology and profiling over a wide range of targets.

View Article and Find Full Text PDF

The aim of this study was to create and characterize constitutively active mutant (CAM) histamine H(1) receptors (H(1)R) using random mutagenesis methods to further investigate the activation process of the rhodopsin-like family of G protein-coupled receptors (GPCRs). This approach identified position 6.40 in TM 6 as a "hot spot" because mutation of Ile6.

View Article and Find Full Text PDF

The mechanisms underlying the clinical properties of atypical antipsychotics have been postulated to be mediated, in part, by interactions with the 5-HT2A receptor. Recently, it has been recognized that clinically effective antipsychotic drugs are 5-HT2A receptor inverse agonists rather than neutral antagonists. In the present study, which is part of the clinical development of the novel, selective 5-HT2A receptor inverse agonist ACP-103, we applied positron emission tomography (PET) with the radioligand [11C]N-methylspiperone ([11C]NMSP) to study the relationship between oral dose, plasma level, and uptake of ACP-103 in living human brain.

View Article and Find Full Text PDF
Article Synopsis
  • Atypical antipsychotic drugs (APDs) target dopamine D(2) receptors but have side effects like motor deficits and cognitive dulling; newer APDs with additional effects on serotonin receptors (5-HT(2A)) show better efficacy.
  • ACP-103 is a novel compound that acts as a selective 5-HT(2A) inverse agonist without affecting D(2) receptors, aiming to enhance therapeutic effects while minimizing side effects.
  • Research indicates that ACP-103 can improve the effectiveness of other APDs and reduce unwanted side effects associated with them, suggesting its potential as a beneficial adjunctive treatment.
View Article and Find Full Text PDF

The human histamine H(1) receptor (H(1)R) is a prototypical G protein-coupled receptor and an important, well characterized target for the development of antagonists to treat allergic conditions. Many neuropsychiatric drugs are also known to potently antagonize this receptor, underlying aspects of their side effect profiles. We have used the cell-based receptor selection and amplification technology assay to further define the clinical pharmacology of the human H(1)R by evaluating >130 therapeutic and reference drugs for functional receptor activity.

View Article and Find Full Text PDF

A 30-membered library of amides based on the potent urotensin II (UII) receptor agonist FL104, has been synthesized from ten different carboxylic acids and three amines. A synthetic protocol producing the amides in 47-98% yield has been developed in which the purification involved only extractions and in a few cases filtration through an ion-exchange resin. It was found that 5mg of starting material was enough to obtain reproducible results and excellent purities.

View Article and Find Full Text PDF

Six different series of nonpeptidic urotensin II receptor agonists have been synthesized and evaluated for their agonistic activity in a cell-based assay (R-SAT). The compounds are ring-opened analogues of the isochromanone-based agonist AC-7954 with different functionalities constituting the linker between the two aromatic ring moieties. Several of the compounds are highly potent and efficacious, with N-[1-(4-chlorophenyl)-3-(dimethylamino)-propyl]-4-phenylbenzamide oxalate (5d) being the most potent.

View Article and Find Full Text PDF

Drugs targeting retinoid receptors have been developed to treat a variety of therapeutic indications, but their success has been limited in part due to lack of selectivity. A novel functional cell-based assay R-SATtrade mark was employed to screen a small molecule chemical library and identify a variety of novel RAR agonists with various subtype selectivities, including RARbeta/gamma and RARgamma selective agonists. A novel class of synthetic compounds that distinguishes between the different RARbeta isoforms is described.

View Article and Find Full Text PDF

4'-Octyl-4-biphenylcarboxylic acid (1g, AC-55649) was identified as a highly isoform-selective agonist at the human RARbeta2 receptor in a functional intact cell-based screening assay. The subsequent hit to lead optimization transformed the lipophilic, poorly soluble hit into a more potent and orally available compound (2, AC-261066) with retained beta2 selectivity and greatly improved physiochemical properties. Being an isoform-selective RARbeta2 receptor agonist that discriminates between nuclear receptor isoforms having identical ligand binding domains, 2 will be useful as a pharmacological research tool but also a valuable starting point for drug development.

View Article and Find Full Text PDF

Drugs that antagonize D2-like receptors are effective antipsychotics, but the debilitating movement disorder side effects associated with these drugs cannot be dissociated from dopamine receptor blockade. The "atypical" antipsychotics have a lower propensity to cause extrapyramidal symptoms (EPS), but the molecular basis for this is not fully understood nor is the impact of inverse agonism upon their clinical properties. Using a cell-based functional assay, we demonstrate that overexpression of Galphao induces constitutive activity in the human D2-like receptors (D2, D3, and D4).

View Article and Find Full Text PDF

A series of analogues of the selective non-peptide urotensin II (UII) receptor agonist 3-(4-chlorophenyl)-3-(2-dimethylaminoethyl)-isochroman-1-one (AC-7954, 1) was synthesized and evaluated for UII agonist activity using a functional cell-based assay. The introduction of a methyl group in the 4-position resulted in a complete loss of activity, whereas substituents in the aromatic rings were beneficial. Sterically demanding amino groups were also detrimental to the activity.

View Article and Find Full Text PDF

Rationale: Clozapine is a unique antipsychotic, with efficacy against positive symptoms in treatment-resistant schizophrenic patients, and the ability to improve cognition and treat the negative symptoms characteristic of this disease. Despite its unique clinical actions, no specific molecular mechanism responsible for these actions has yet been described.

Objectives And Methods: To comprehensively profile a large library of neuropsychiatric drugs, including most antipsychotics, at human monoamine receptors using R-SAT, an in vitro functional assay.

View Article and Find Full Text PDF

The primary purpose of the present series of experiments was to characterize the in vitro and in vivo pharmacology profile of 2-(4-methoxy-phenyl)-N-(4-methyl-benzyl)-N-(1-methyl-piperidin-4-yl)-acetamide hydrochloride (AC-90179), a selective serotonin (5-HT2A) receptor inverse agonist, in comparison with the antipsychotics haloperidol and clozapine. The secondary purpose was to characterize the pharmacokinetic profile of AC-90179. Like all atypical antipsychotics, AC-90179 shows high potency as an inverse agonist and competitive antagonist at 5HT2A receptors.

View Article and Find Full Text PDF

The 5-HT1A receptor is a critical mediator of serotonergic (5-HT) function. We have identified 13 potential single nucleotide polymorphisms resulting in amino acid changes throughout the human 5-HT1A receptor. The pharmacological profiles of these 13 polymorphic variants were then characterized using a high-throughput assay based on ligand-dependent transformation of NIH/3T3 cells.

View Article and Find Full Text PDF

The human histamine H1 receptor (H1R) is an important, well characterized target for the development of antagonists to treat allergic conditions. Many neuropsychiatric drugs are known to potently antagonize the H1R, thereby producing some of their side effects. In contrast, the tolerability and potential therapeutic utility of H1R agonism is currently unclear.

View Article and Find Full Text PDF

1. Factors influencing agonist affinity and relative efficacy have been studied for the 5-HT(1A) serotonin receptor using membranes of CHO cells expressing the human form of the receptor and a series of R-and S-2-(dipropylamino)tetralins (nonhydroxylated and monohydroxylated (5-OH, 6-OH, 7-OH, 8-OH) species). 2.

View Article and Find Full Text PDF

A functional cell-based screen identified 3-(4-chlorophenyl)-3-(2-(dimethylamino)ethyl)isochroman-1-one hydrochloride (AC-7954, 1) as a nonpeptidic agonist of the urotensin-II receptor. Racemic 1 had an EC50 of 300 nM at the human UII receptor and was highly selective. Testing of the enantiopure (+)- and (-)- 1 revealed that the UII receptor activity of racemic 1 resides primarily in (+)-1.

View Article and Find Full Text PDF

Receptors have well-conserved regions that are recognized and activated by hormones and neurotransmitters. Most drugs bind to these sites and mimic or block the action of the native ligands. Using a high-throughput functional screen, we identified a potent and selective M(1) muscarinic receptor agonist from a novel structural class.

View Article and Find Full Text PDF