The safety screening of manufactured nanomaterials (MNMs) is essential for their adoption by consumers and the marketplace. Lately, animal-based testing has been replaced by mechanistically informative in vitro assays due to the requirements of regulatory agencies. Cell viability assays are widely employed for manufactured nanomaterial hazard screening as a first-tier approach.
View Article and Find Full Text PDFUsing dendron chemistry, we developed stability enhanced, carboxylate surface modified (negatively charged dendron) AuNPs (Au-NCD). Since the carboxylate surface of Au-NCD is optimal for complexation with cisplatin (Pt) moieties, we further synthesized Pt loaded Au-NCD (Au-NCD/Pt) to serve as potential therapeutic anticancer agents. The size distribution, zeta potential and surface plasmon resonance of both Au-NCDs and Au-NCD/Pt were characterized via dynamic light scattering, scanning transmission electron microscopy and ultraviolet-visible spectrophotometry.
View Article and Find Full Text PDFDespite the great potential of using positively charged gold nanoparticles (AuNPs) in nanomedicine, no systematic studies have been reported on their synthesis optimization or colloidal stability under physiological conditions until a group at the National Institute of Standards and Technology recently succeeded in producing remarkably stable polyethyleneimine (PEI)-coated AuNPs (Au-PEI). This improved version of Au-PEI (Au-PEI25kB) has increased the demand for toxicity and teratogenicity information for applications in nanomedicine and nanotoxicology. In vitro assays for Au-PEI25kB in various cell lines showed substantial active cytotoxicity.
View Article and Find Full Text PDFExtracellular vesicles (EVs) are traditionally divided into two major groups: (i) large vesicles originating from plasma membrane and called microvesicles, and (ii) small vesicles originating from the endoplasmic membrane and called exosomes. However, it is increasingly clear that the actual composition of a particular EV preparation cannot be adequately described with these two simple terms and is much more complex. Since the cell membrane origin of EVs predetermines their biological functions, the understanding of EV biogenesis is important for accurate interpretation of observed results.
View Article and Find Full Text PDFElucidating the polyethyleneimine (PEI) chemistry to predictively and reproducibly synthesize gold nanoparticle (AuNP)-PEI conjugates with desired properties has been elusive despite evaluation in numerous studies and reported enhanced properties. The lack of reproducible methods to control the core size and stability has led to contradictory results for performance and safety; thus, advancement of the conjugate platform for commercial use has likely been hindered. Recently, we reported a robust, reproducible method for synthesizing PEI-functionalized AuNPs (Au-PEIs), providing an opportunity to investigate structure-function relationships and to further investigate synthesis parameters affecting performance, where only materials stable in biological media are candidates for use.
View Article and Find Full Text PDFLiposomal formulations for the treatment of cancer and other diseases are the most common form of nanotechnology enabled pharmaceuticals (NEPs) submitted for market approval and in clinical application today. The accurate characterization of their physical-chemical properties is a key requirement; in particular, size, size distribution, shape, and physical-chemical stability are key among properties that regulators identify as critical quality attributes. Here we develop and validate an optimized method, based on multi-detector asymmetrical-flow field flow fractionation (MD-AF4) to accurately and reproducibly separate liposomal drug formulations into their component populations and to characterize their associated size and size distribution, whether monomodal or polymodal in nature.
View Article and Find Full Text PDFDuring the past two decades the nanomedicine field has experienced significant progress. To date, over sixty nanoparticle (NP) formulations have been approved in the US and EU while many others are in clinical or preclinical development, indicating a concerted effort to translate promising bench research to commercially viable pharmaceutical products. The use of NPs as novel drug delivery systems, for example, can improve drug safety and efficacy profiles and enable access to intracellular domains of diseased cells, thus paving the way to previously intractable biological targets.
View Article and Find Full Text PDFProtein aggregation is a critical concern in bioprocessing, where its presence can result in serious adverse interactions in clinical end-use applications. In this study, an aerosol-based technique, electrospray differential mobility analysis (ES-DMA), was used to quantify thermally-induced protein aggregation kinetics for bovine serum albumin (BSA) and α-chymotrypsinogen A (α-chymo), employing a new methodology to modify the solution for compatibility with the electrospray process. Results are compared orthogonally with asymmetrical-flow field-flow fractionation (AF4), a hydrodynamic separation technique with UV detection.
View Article and Find Full Text PDFAn early dialogue between nanomedicine developers and regulatory authorities are of utmost importance to anticipate quality and safety requirements for these innovative health products. In order to stimulate interactions between the various communities involved in a translation of nanomedicines to clinical applications, the European Commission's Joint Research Centre hosted a workshop titled "Bridging communities in the field of Nanomedicine" in Ispra/Italy on the 27th -28th September 2017. Experts from regulatory bodies, research institutions and industry came together to discuss the next generation of nanomedicines and their needs to obtain regulatory approval.
View Article and Find Full Text PDFTwo modes of capillary electrophoresis (CE), capillary zone electrophoresis (CZE) and capillary transient isotachophoresis (ctITP), were compared for the detection and separation of spherical gold nanoparticles (AuNPs) and gold nanorods (AuNRs). The development of ctITP using two different leading ions is described. Overall, when compared to traditional capillary zone electrophoresis (CZE), ctITP resulted in improved peak shape and peak efficiency.
View Article and Find Full Text PDFA fast, quantitative method for determining the dimensions of nanorods (i.e., length and diameter) is described, based on hyphenation of differential mobility analysis (DMA) with single particle inductively coupled plasma mass spectrometry (spICP-MS).
View Article and Find Full Text PDFCellulose nanocrystals (CNCs) derived from various types of cellulose biomass have significant potential for applications that take advantage of their availability from renewable natural resources and their high mechanical strength, biocompatibility and ease of modification. However, their high polydispersity and irregular rod-like shape present challenges for the quantitative dimensional determinations that are required for quality control of CNC production processes. Here we have fractionated a CNC certified reference material using a previously reported asymmetrical-flow field-flow fractionation (AF4) method and characterized selected fractions by atomic force microscopy (AFM) and transmission electron microscopy.
View Article and Find Full Text PDFCationic polyethyleneimine (PEI)-conjugated gold nanoparticles (AuNPs) that are chemically and physically stable under physiological conditions are an ideal candidate for certain bio-medical applications, in particular DNA transfection. However, the issue remains in reproducibly generating uniform stable species, which can cause the inadequate characterization of the resulting product under relevant conditions and timepoints. The principal objective of the present study was to develop an optimized and reproducible synthetic route for preparing stable PEI-conjugated AuNPs (Au-PEIs).
View Article and Find Full Text PDFCerium oxide nanomaterials (nanoceria, CNMs) are receiving increased attention from the research community due to their unique chemical properties, most prominent of which is their ability to alternate between the Ce and Ce oxidation states. While many analytical techniques and methods have been employed to characterize the amounts of Ce and Ce present (Ce/Ce ratio) within nanoceria materials, to-date no studies have used multiple complementary analytical tools (orthogonal analysis) with technique-independent oxidation state controls for quantitative determinations of the Ce/Ce ratio. Here, we describe the development of analytical methods measuring the oxidation states of nanoceria analytes using technique-independent Ce (CeAlO:Ge) and Ce (CeO) control materials, with a particular focus on x-ray photoelectron spectroscopy (XPS) and electron energy loss spectroscopy (EELS) approaches.
View Article and Find Full Text PDFApplications of asymmetrical flow field-flow fractionation (AF4) continue to expand rapidly in the fields of nanotechnology and biotechnology. In particular, AF4 has proven valuable for the separation and analysis of particles, biomolecular species (e.g.
View Article and Find Full Text PDFThe increased use and incorporation of engineered nanoparticles (ENPs) in consumer products requires a robust assessment of their potential environmental implications. However, a lack of standardized methods for nanotoxicity testing has yielded results that are sometimes contradictory. Standard ecotoxicity assays may work appropriately for some ENPs with minimal modification but produce artifactual results for others.
View Article and Find Full Text PDFCellulose nanocrystals (CNCs) are renewable, naturally derived polymeric nanomaterials receiving substantial attention for a wide range of potential applications. The recent availability of high quality reference materials will facilitate the development and validation of measurement methods needed to advance the scientific and commercial use of CNCs. In the present study, we demonstrate an optimized method to fractionate CNCs with narrow size dispersion based on asymmetrical-flow field-flow fractionation (AF4) coupled with on-line multi-angle light scattering (MALS), dynamic light scattering (DLS), and differential refractometry (dRI).
View Article and Find Full Text PDFThe impact and behavior of engineered nanomaterials (ENMs) entering the environment is an important issue due to their growing use in consumer and agricultural products. Their mobility and fate in the environment are heavily impacted by their interactions with natural particle components of saturated sediments and soils. In this study, functionalized gold nanoparticles (AuNPs - used as model ENMs) were spiked into complex solid-containing media (standard soils and estuarine sediment in moderately hard water).
View Article and Find Full Text PDFCisplatin-complexed gold nanoparticles (Pt-AuNP) provide a promising strategy for chemo-radiation-based anticancer drugs. Effective design of such platforms necessitates reliable assessment of surface engineering on a quantitative basis and its influence on drug payload, stability, and release. In this paper, poly(ethylene glycol) (PEG)-stabilized Pt-AuNP was synthesized as a model antitumor drug platform, where Pt is attached via a carboxyl-terminated dendron ligand.
View Article and Find Full Text PDFSingle particle ICP-MS has evolved rapidly as a quantitative method for determining nanoparticle size and number concentration at environmentally relevant exposure levels. Central to the application of spICP-MS is a commonly used, but not rigorously validated, calibration approach based on the measured transport efficiency and the response of ionic standards. In this work, we present a comprehensive and systematic study of the accuracy, precision and robustness of spICP-MS using the rigorously characterized reference material (RM) 8017 (Polyvinylpyrrolidone Coated Nominal 75 nm Silver Nanoparticles), recently issued by the National Institute of Standards and Technology (NIST).
View Article and Find Full Text PDFThe characterization of manufactured nanoparticles (MNPs) in environmental samples is necessary to assess their behavior, fate and potential toxicity. Several techniques are available, but the limit of detection (LOD) is often too high for environmentally relevant concentrations. Therefore, pre-concentration of MNPs is an important component in the sample preparation step, in order to apply analytical tools with a LOD higher than the ng kg level.
View Article and Find Full Text PDFPolymeric coatings are commonly applied to impart functionality and colloidal stability to engineered nanoparticles. In natural environments, transformations of the coating can modify the particle transport behavior, but the mechanisms and outcomes of these transformations have not yet been thoroughly evaluated. This study investigates the photo-transformations of polyvinylpyrrolidone (PVP) coatings on gold nanoparticles (AuNPs) under ultraviolet (UV) irradiation, representing light exposure in surface waters or other sunlit environments, and the impact on the AuNP colloidal stability.
View Article and Find Full Text PDFThe novel hyphenation of electrospray-differential mobility analysis with single particle inductively coupled plasma mass spectrometry (ES-DMA-spICPMS) was demonstrated with the capacity for real-time size, mass, and concentration measurement of nanoparticles (NPs) on a particle-to-particle basis. In this proof-of-concept study, the feasibility of this technique was validated through both concentration and mass calibration using NIST gold NP reference materials. A detection limit of 10(5) NPs mL(-1) was determined under current experimental conditions, which is about 4 orders of magnitude lower in comparison to that of a traditional ES-DMA setup using a condensation particle counter as detector.
View Article and Find Full Text PDF