Publications by authors named "Habtom B Gobeze"

Diblock conjugated oligomers are π-conjugated molecules that contain two segments having distinct frontier orbital energies and HOMO-LUMO gap offsets. These oligomers are of fundamental interest to understand how the distinct π-conjugated segments interact and modify their excited state properties. The current paper reports a study of two series of diblock oligomers that contain oligothiophene (T) and 4,7-bis(2-thienyl)-2,1,3-benzothiadiazole (TBT) segments that are coupled by either ethynyl (-C≡C-) or -(-C≡C-)Pt(II)(PBu) acetylide linkers.

View Article and Find Full Text PDF

Structurally well-defined self-assembled supramolecular multi-modular donor-acceptor conjugates play a significant role in furthering our understanding of photoinduced energy and electron transfer events occurring in nature, e. g., in the antenna-reaction centers of photosynthesis and their applications in light energy harvesting.

View Article and Find Full Text PDF

A series of diblock oligomers containing oligothiophene (T, = 4, 5) and 4,7-di(thiophen-2-yl)benzo[][1,2,5]thiadizole (TBT) segments, functionalized with carboxylic acid anchoring groups, were prepared and anchored to mesoporous TiO films to study wavelength-dependent interfacial electron transfer mechanisms. Thin films of the surface-anchored diblock oligomers contained two absorption bands centered at 400 and 500 nm, corresponding to the T and TBT blocks, respectively. Pulsed-laser excitation of the oligomer-sensitized films yielded local excited-states that promoted electron injection into TiO.

View Article and Find Full Text PDF

This paper reports an investigation of the electronic structure and photophysical properties of two "diblock" π-conjugated oligomers (T4-TBT and T8-TBT) that feature electron rich tetra(thiophene) (T4) or octa(thiophene) (T8) segments linked to an electron poor 4,7-bis(2-thienyl)-2,1,3-benzothiadiazole (TBT) moiety. Electrochemistry and UV-visible absorption spectroscopy reveals that the diblock oligomers display redox and absorption features that can be attributed to the Tn and TBT units. Density functional theory (DFT) and time-dependent DFT (TDDFT) calculations support the experimental electrochemistry and optical spectroscopy results, suggesting that the frontier orbitals on the diblock oligomers retain characteristics of the individual π-conjugated segments.

View Article and Find Full Text PDF

N-heterocyclic carbene complexes of the type -(NHC)Pt(CC-Ar) (where Ar = phenyl or substituted phenyl) are of interest as violet and blue phosphors. These complexes emit efficient phosphorescence in solution and in the solid state, and they have been applied as phosphors in organic light emitting diodes. This study explores the effect of bromine substitution on the -(NHC)Pt(CC-Ar) chromophore through photophysical studies of a pair of complexes in which the phenyl groups feature either 3,5-dibromo- or 4-monobromo-substituents (IPt-DB and IPt-MB, respectively).

View Article and Find Full Text PDF

Two water-soluble zinc(II) phthalocyanines substituted with two or four permethylated β-cyclodextrin (β-CD) moieties at the α positions have been utilized as building blocks for the construction of artificial photosynthetic models in water. The hydrophilic and bulky β-CD moieties not only can increase the water solubility of the phthalocyanine core and prevent its stacking in water but can also bind with a tetrasulfonated zinc(II) porphyrin (ZnTPPS) and/or sodium 2-anthraquinonesulfonate (AQ) in water through host-guest interactions. The binding interactions of these species have been studied spectroscopically, while the photoinduced processes of the resulting complexes have been investigated using steady-state and time-resolved spectroscopic methods.

View Article and Find Full Text PDF

We report a water-soluble poly(phenylene ethynylene) () that is functionalized with oxidized oxaliplatin Pt(IV) units and its use for photoactivated chemotherapy. The photoactivation strategy is based on photoinduced electron transfer from the PPE backbone to oxaliplatin Pt(IV) as an electron acceptor; this process triggers the release of oxaliplatin, which is a clinically used anticancer drug. Mechanistic studies carried out using steady-state and time-resolved fluorescence spectroscopy coupled with picosecond-nanosecond transient absorption support the hypothesis that electron transfer triggers the drug release.

View Article and Find Full Text PDF

Graphene doped with heteroatoms such as nitrogen, boron, and phosphorous by replacing some of the skeletal carbon atoms is emerging as an important class of two-dimensional materials as it offers the much-needed bandgap for optoelectronic applications and provides better access for chemical functionalization at the heteroatom sites. Covalent grafting of photosensitizers onto such doped graphenes makes them extremely useful for light-induced applications. Herein, we report the covalent functionalization of N-doped graphene (NG) with two well-known electron donor photosensitizers, namely, zinc porphyrin (ZnP) and zinc phthalocyanine (ZnPc), using the simple click chemistry approach.

View Article and Find Full Text PDF

The structure of poly(-isopropylacrylamide) (PNIPAM) in solution is still an unresolved topic. Here, the PNIPAM structure in water was investigated using a bottom-up approach, involving the monomer, dimer, and trimer, and a combination of infrared (IR) spectroscopies as well as molecular dynamics simulations. The experiments show that the monomer and oligomers exhibit a broad and asymmetric amide I band with two underlying transitions, while PNIPAM presents the same major transitions and a minor one.

View Article and Find Full Text PDF

A multichromophoric triad, ZnP-OxP-C60 containing porphyrin (ZnTPP hereafter ZnP), oxoporphyrinogen (OxP) and fullerene (C60) has been synthesized to probe the intramolecular dynamics of its electron and energy transfer in relation to the presence of the closely linked electron deficient OxP-C60 'special pair', constructed as a mimic of the naturally occurring photosynthetic antenna-reaction center. The DFT optimized structure of the triad reveals the relative spatial remoteness of the ZnP entity with proximal OxP/C60 entities. Free-energetics of different energy and electron transfer events were estimated using spectral, computational and electrochemical studies, according to the Rehm-Weller approach.

View Article and Find Full Text PDF

Light induced charge separation in a newly synthesized triphenylamine-thiophene-ScN@ -C donor-acceptor conjugate and its C analog, triphenylamine-thiophene-C conjugate is reported, and the significance of the thiophene spacer in promoting electron transfer events is unraveled.

View Article and Find Full Text PDF

Deep eutectic solvents (DES) are emerging sustainable designer solvents viewed as greener and better alternatives to ionic liquids. Nonionic DESs possess unique properties such as viscosity and hydrophobicity that make them desirable in microextraction applications such as oil-spill remediation. This work builds upon a nonionic DES, NMA-LA DES, previously designed by our group.

View Article and Find Full Text PDF

The formation of a high-energy, long-lived radical ion-pair by electron transfer exclusively from the triplet excited state, is demonstrated in a newly synthesized platinum porphyrin-fullerene dyad, in which the porphyrin ring is modified with three electron rich triphenylamine entities. The spin selectivity of the electron transfer leading to the formation of the radical ion-pair is demonstrated using time-resolved optical and EPR spectroscopic techniques.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers explored how triplet photosensitizers, compared to traditional singlet ones, generate long-lasting charge-separated states in modified single-walled carbon nanotube (SWCNT) hybrids.
  • The study focused on SWCNTs of two sizes, (6,5) and (7,6), which were chemically altered to include a palladium porphyrin triplet photosensitizer, leading to effective charge stabilization and significant interactions confirmed through various analytical techniques.
  • Results showed that the charge-separated states created by the triplet photosensitizer lasted over 3 nanoseconds, resulting in better photocatalytic efficiency and photoproduct yields when compared to hybrids using singlet photosensitizers, especially with the (6
View Article and Find Full Text PDF

Singlet oxygen sensitization involving a class of hemiquinonoid-substituted resorcinarenes prepared from the corresponding 3,5-di--butyl-4-hydroxyphenyl-substituted resorcinarenes is reported. Based on variation in the molecular structures, quantum yields comparable with that of the well-known photosensitizing compound -tetraphenylporphyrin were obtained for the octabenzyloxy-substituted double hemiquinonoid resorcinarene reported herein. The following classes of compounds were studied: benzyloxy-substituted resorcinarenes, acetyloxy-substituted resorcinarenes and acetyloxy-substituted pyrogallarenes.

View Article and Find Full Text PDF

A directly linked BODIPY-oxoporphyrinogen dyad has been newly synthesized and occurrence of sequential photoinduced energy and electron transfer upon fluoride anion binding to oxoporphyrinogen has been demonstrated by spectral, electrochemical and femtosecond transient absorption studies.

View Article and Find Full Text PDF

Hetero-atom doped graphene is a two-dimensional material with a band gap, needed to build optoelectronic devices. However, research progress in this area has been sluggish due to synthetic challenges to build energy harvesting materials, especially donor-acceptor type hybrids. In the present study, using chemistry, we have successfully synthesized a donor-acceptor hybrid comprised of N-doped graphene and perylenediimide (PDI), a well-known electron-accepting photosensitizer.

View Article and Find Full Text PDF

The functionalization of MoS is of paramount importance for tailoring its properties towards optoelectronic applications and unlocking its full potential. Zinc phthalocyanine (ZnPc) carrying an 1,2-dithiolane oxide linker was used to functionalize MoS at defect sites located at the edges. The structure of ZnPc-MoS was fully assessed by complementary spectroscopic, thermal, and microscopy imaging techniques.

View Article and Find Full Text PDF

N-Doped graphene (N-G) was chemically functionalized by -alkylation with the well-known electron acceptor C. The degree of functionalization and the key structural features of the N-G/C hybrid were systematically investigated by a number of techniques including thermogravimetric analysis, X-ray photoelectron and Raman spectroscopies and transmission electron and atomic force microscopies. Absorption and electrochemical studies revealed interactions between the N-G and C while the fluorescence of C within the hybrid was found to be fully quenched.

View Article and Find Full Text PDF

Exfoliated semiconducting MoS and WS were covalently functionalized with 1,2-dithiolane-modified carbon nanodots (CNDs). The newly synthesized CND-MoS and CND-WS hybrids were characterized by spectroscopic, thermal, and electron microscopy imaging methods. Based on electronic absorption and fluorescence emission spectroscopy, modulation of the optoelectronic properties of TMDs by interfacing with CNDs was accomplished.

View Article and Find Full Text PDF

Borondipyrromethene (BDP) naphthalenediimide (NDI) triads (BDP-NDI) and diiodo-BDP derivative (DiiodoBDP-NDI)) were synthesized to study the Förster resonance energy transfer (FRET) and its impact on the triplet state formation and dynamics. In these triads, diiodo-BDP and BDP are the energy donors and NDI is the energy acceptor. Nanosecond transient absorption spectra of triads indicated that triplet state is localized on NDI moiety, either by selective photoexcitation of the Diiodo-BDP or NDI unit.

View Article and Find Full Text PDF

Enriched semiconducting single-walled carbon nanotubes (SWCNT (6,5) and SWCNT (7,6)) and HiPco nanotubes were covalently functionalized with either zinc phthalocyanine or silicon phthalocyanine as electron donors. The synthetic strategy resulted in edge-on and face-on geometries with respect to the phthalocyanine geometry, with both phthalocyanines held by an electronically conducting diphenylacetylene linker. The extent of functionalization in the MPc-SWCNT (M = Zn or Si) donor-acceptor nanohybrids was determined by systematic studies involving AFM, TGA, XPS, optical and Raman techniques.

View Article and Find Full Text PDF

A bis-crown ether-oxoporphyrinogen was newly synthesized and self-assembled concurrently with C alkyl ammonium cations at the crown ether sites and F anions (through hydrogen bonding) at the oxoporphyrinogen core. Ultrafast photoinduced charge transfer processes within the donor-acceptor conjugate were promoted by fluoride ion binding and this was established using various spectroscopic methods and transient absorption studies.

View Article and Find Full Text PDF

Sequential photoinduced energy transfer followed by electron transfer leading to the formation of charge separated states in a newly assembled series of supramolecular triads comprised of boron dipyrromethenes (BODIPY or BDP), aluminum porphyrin (AlTPP) and C is demonstrated. In the present strategy, the energy donor (BDP) and electron acceptor (C) were axially positioned to the plane of AlTPP via the central metal. The structural integrity of the newly synthesized compounds and self-assembled systems were fully established using spectral, electrochemical and computational methods.

View Article and Find Full Text PDF

BF -chelated dipyrromethene, BODIPY, was functionalized to carry two styryl crown ether tails and a secondary electron donor at the meso position. By using a "two-point" self-assembly strategy, a bis-alkylammonium-functionalized fullerene (C ) was allowed to self-assemble the crown ether voids of BODIPY to obtain multimodular donor-acceptor conjugates. As a consequence of the two-point binding, the 1:1 stoichiometric complexes formed yielded complexes of higher stability in which fluorescence of BODIPY was found to be quenched; this suggested the occurrence of excited-state processes.

View Article and Find Full Text PDF