Idiopathic pulmonary fibrosis (IPF) is a chronic disease characterized by excessive deposition of extracellular matrix in the interstitial lung parenchyma, often manifested by dyspnea and progressive loss of lung function. The role of inflammation in the pathogenesis of IPF is not well understood. This study evaluated the histopathological and inflammatory components of bleomycin-induced pulmonary fibrosis in mouse and sheep models, in terms of their ability to translate to the human IPF.
View Article and Find Full Text PDFThe primary flavonoid, pinocembrin, is thought to have a variety of medical uses which relate to its reported anti-oxidant, anti-inflammatory, anti-microbial and anti-cancer properties. Some studies have reported that this flavonoid has anti-fibrotic activities. In this study, we investigated whether pinocembrin would impede fibrosis, dampen inflammation and improve lung function in a large animal model of pulmonary fibrosis.
View Article and Find Full Text PDFBackground: Idiopathic pulmonary fibrosis (IPF) is a chronic progressive fibroproliferative disorder that has one of the poorest prognoses amongst interstitial lung diseases. Recently, the finding of aberrant expression levels of miRNAs in IPF patients has drawn significant attention to the involvement of these molecules in the pathogenesis of this disease. Clarification of the differential expression of miRNAs in health and disease may identify novel therapeutic strategies that can be employed in the future to combat IPF.
View Article and Find Full Text PDFIdiopathic pulmonary fibrosis (IPF) is a progressive chronic lung disease characterized by excessive extracellular matrix (ECM) deposition in the parenchyma of the lung. Accompanying the fibrotic remodeling, dysregulated angiogenesis has been observed and implicated in the development and progression of pulmonary fibrosis. Copper is known to be required for key processes involved in fibrosis and angiogenesis.
View Article and Find Full Text PDFBackground: Although IPF is described traditionally as a disease affecting lung parenchyma, there is renewed interest in the alterations in the structure and function of the small airways in both IPF patients, and animal models of pulmonary fibrosis. Small airway remodeling may contribute to the pathophysiology of pulmonary fibrosis. Given the dearth of knowledge of small airway changes in pulmonary fibrosis, this study aims to assess the structural remodeling, as well as functional changes associated with bleomycin-injured small airways in a sheep model of pulmonary fibrosis.
View Article and Find Full Text PDFTracheitis associated with the chronic respiratory disease in chickens caused by Mycoplasma gallisepticum is marked by infiltration of leukocytes into the mucosa. Although cytokines/chemokines are known to play a key role in the recruitment, differentiation, and proliferation of leukocytes, those that are produced and secreted into the trachea during the chronic stages of infection with M. gallisepticum have not been described previously.
View Article and Find Full Text PDFIdiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease, characterized by progressive damage to the lung tissues. Apoptosis and endoplasmic reticulum stress (ER stress) in type II alveolar epithelial cells (AECs) and lung macrophages have been linked with the development of IPF. Therefore, apoptosis- and ER stress-targeted therapies have drawn attention as potential avenues for treatment of IPF.
View Article and Find Full Text PDFIdiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease with limited therapeutic options and poor prognosis. IPF has been associated with aberrant vascular remodelling, however the role of vascular remodelling in pulmonary fibrosis is poorly understood. Here, we used a novel segmental challenge model of bleomycin-induced pulmonary fibrosis in sheep to evaluate the remodelling of the pulmonary vasculature, and to investigate the changes to this remodelling after the administration of the K3.
View Article and Find Full Text PDFIdiopathic pulmonary fibrosis (IPF) is a chronic progressive fibrotic lung disease with unknown cause. While the drugs nintedanib and pirfenidone have been approved for the treatment of IPF, they only slow disease progression and can induce several side-effects, suggesting that there is still an unmet need to develop new efficacious drugs, and interventions strategies, to combat this disease. We have recently developed a sheep model of pulmonary fibrosis for the preclinical testing of novel anti-fibrotic drugs.
View Article and Find Full Text PDF