Publications by authors named "Habs D"

Reflecting light from a mirror moving close to the speed of light has been envisioned as a route towards producing bright X-ray pulses since Einstein's seminal work on special relativity. For an ideal relativistic mirror, the peak power of the reflected radiation can substantially exceed that of the incident radiation due to the increase in photon energy and accompanying temporal compression. Here we demonstrate for the first time that dense relativistic electron mirrors can be created from the interaction of a high-intensity laser pulse with a freestanding, nanometre-scale thin foil.

View Article and Find Full Text PDF

For x rays the real part of the refractive index, dominated by Rayleigh scattering, is negative and converges to zero for higher energies. For γ rays a positive component, related to Delbrück scattering, increases with energy and becomes dominating. The deflection of a monochromatic γ beam due to refraction was measured by placing a Si wedge into a flat double crystal spectrometer.

View Article and Find Full Text PDF

Experimental data from the Trident Laser facility is presented showing quasimonoenergetic carbon ions from nm-scaled foil targets with an energy spread of as low as ±15% at 35 MeV. These results and high-resolution kinetic simulations show laser acceleration of quasimonoenergetic ion beams by the generation of ion solitons with circularly polarized laser pulses (500 fs, λ=1054  nm). The conversion efficiency into monoenergetic ions is increased by an order of magnitude compared with previous experimental results, representing an important step towards applications such as ion fast ignition.

View Article and Find Full Text PDF

A novel ion wide angle spectrometer (iWASP) has been developed, which is capable of measuring angularly resolved energy distributions of protons and a second ion species, such as carbon C(6 +), simultaneously. The energy resolution for protons and carbon ions is better than 10% at ∼50 MeV/nucleon and thus suitable for the study of novel laser-ion acceleration schemes aiming for ultrahigh particle energies. A wedged magnet design enables an acceptance angle of 30°(∼524 mrad) and high angular accuracy in the μrad range.

View Article and Find Full Text PDF

Here, we report on the development of a novel high resolution and high dispersion Thomson parabola for simultaneously resolving protons and low-Z ions of more than 100 MeV/nucleon necessary to explore novel laser ion acceleration schemes. High electric and magnetic fields enable energy resolutions of ΔE∕E < 5% at 100 MeV/nucleon and impede premature merging of different ion species at low energies on the detector plane. First results from laser driven ion acceleration experiments performed at the Trident Laser Facility demonstrate high resolution and superior species and charge state separation of this novel Thomson parabola for ion energies of more than 30 MeV/nucleon.

View Article and Find Full Text PDF

Laser wakefield experiments present a unique challenge in measuring the resulting electron energy properties due to the large energy range of interest, typically several 100 MeV, and the large electron beam divergence and pointing jitter >1 mrad. In many experiments the energy resolution and accuracy are limited by the convolved transverse spot size and pointing jitter of the beam. In this paper we present an electron energy spectrometer consisting of two magnets designed specifically for laser wakefield experiments.

View Article and Find Full Text PDF

We present experimental studies on ion acceleration from ultrathin diamondlike carbon foils irradiated by ultrahigh contrast laser pulses of energy 0.7 J focused to peak intensities of 5x10(19) W/cm2. A reduction in electron heating is observed when the laser polarization is changed from linear to circular, leading to a pronounced peak in the fully ionized carbon spectrum at the optimum foil thickness of 5.

View Article and Find Full Text PDF

We report on the acceleration of ion beams from ultrathin diamondlike carbon foils of thickness 50, 30, and 10 nm irradiated by ultrahigh contrast laser pulses at intensities of approximately 7 x 10;{19} W/cm;{2}. An unprecedented maximum energy of 185 MeV (15 MeV/u) for fully ionized carbon atoms is observed at the optimum thickness of 30 nm. The enhanced acceleration is attributed to self-induced transparency, leading to strong volumetric heating of the classically overdense electron population in the bulk of the target.

View Article and Find Full Text PDF

The 1789 keV state in 30Mg was identified as the first excited 0+ state via its electric monopole (E0) transition to the ground state. The measured small value of rho2(E0,0(2)+-->0(1)+)=(26.2+/-7.

View Article and Find Full Text PDF

We report on experimental studies of ion acceleration from spherical targets of diameter 15 microm irradiated by ultraintense (1x10(20) W/cm2) pulses from a 20-TW Ti:sapphire laser system. A highly directed proton beam with plateau-shaped spectrum extending to energies up to 8 MeV is observed in the laser propagation direction. This beam arises from acceleration in a converging shock launched by the laser, which is confirmed by 3-dimensional particle-in-cell simulations.

View Article and Find Full Text PDF

We report on an electron accelerator based on few-cycle (8 fs full width at half maximum) laser pulses, with only 40 mJ energy per pulse, which constitutes a previously unexplored parameter range in laser-driven electron acceleration. The produced electron spectra are monoenergetic in the tens-of-MeV range and virtually free of low-energy electrons with thermal spectrum. The electron beam has a typical divergence of 5-10 mrad.

View Article and Find Full Text PDF

Laser-driven, quasimonoenergetic electron beams of up to approximately 200 MeV in energy have been observed from steady-state-flow gas cells. These beams emitted within a low-divergence cone of 2.1+/-0.

View Article and Find Full Text PDF

This Letter demonstrates the transporting and focusing of laser-accelerated 14 MeV protons by permanent magnet miniature quadrupole lenses providing field gradients of up to 500 T/m. The approach is highly reproducible and predictable, leading to a focal spot of (286 x 173) microm full width at half maximum 50 cm behind the source. It decouples the relativistic laser-proton acceleration from the beam transport, paving the way to optimize both separately.

View Article and Find Full Text PDF

The reduced transition probabilities, B(E2; 0(gs)+ -->2(1)+), have been measured in the radioactive isotopes (108,106)Sn using subbarrier Coulomb excitation at the REX-ISOLDE facility at CERN. Deexcitation gamma rays were detected by the highly segmented MINIBALL Ge-detector array. The results, B(E2;0(gs)+ -->2(1)+)=0.

View Article and Find Full Text PDF

Electrons moving in a strong periodic electromagnetic field (e.g., laser or undulator) may convert quantum vacuum fluctuations into pairs of entangled photons, which can be understood in terms of the Unruh effect.

View Article and Find Full Text PDF

Two different laser energy absorption mechanisms at the front side of a laser-irradiated foil have been found to occur, such that two distinct relativistic electron beams with different properties are produced. One beam arises from the ponderomotively driven electrons propagating in the laser propagation direction, and the other is the result of electrons driven by resonance absorption normal to the target surface. These properties become evident at the rear surface of the target, where they give rise to two spatially separated sources of ions with distinguishable characteristics when ultrashort (40fs) high-intensity laser pulses irradiate a foil at 45 degrees incidence.

View Article and Find Full Text PDF

The early and reliable detection of breast cancer is often difficult with conventional mammography, especially within dense breast parenchyma. An alternative approach using x-rays are phase-sensitive imaging techniques, which are able to visualize the borders of tissues with different refraction indices with very high contrast. These phase contrast imaging techniques can generate projection images with much less glandular dose than conventional mammography.

View Article and Find Full Text PDF

The masses of six neutron-deficient rare holmium and thulium isotopes close to the proton drip line were determined with the SHIPTRAP Penning trap mass spectrometer. For the first time the masses of the proton-unbound isotopes 144,145Ho and 147,148Tm were directly measured. The proton separation energies were derived from the measured mass values and compared to predictions from mass formulas.

View Article and Find Full Text PDF

Neutron-rich, radioactive Zn isotopes were investigated at the Radioactive Ion Beam facility REX-ISOLDE (CERN) using low-energy Coulomb excitation. The energy of the 2(1)+ state in 78Zn could be firmly established and for the first time the 2+ --> 0(1)+ transition in 80Zn was observed at 1492(1) keV. B(E2,2(1)+ --> 0(1)+) values were extracted for (74,76,78,80)Zn and compared to large scale shell model calculations.

View Article and Find Full Text PDF

We report on the first low-energy Coulomb excitation measurements with radioactive Ipi=6- beams of odd-odd nuclei 68,70Cu. The beams were produced at ISOLDE, CERN and were post-accelerated by REX-ISOLDE to 2.83 MeV/nucleon.

View Article and Find Full Text PDF

We calculate the radiation resulting from the Unruh effect for strongly accelerated electrons and show that the photons are created in pairs whose polarizations are perfectly correlated. Apart from the photon statistics, this quantum radiation can further be discriminated from the classical (Larmor) radiation via the different spectral and angular distributions. The signatures of the Unruh effect become significant if the external electromagnetic field accelerating the electrons is not too far below the Schwinger limit and might be observable with future facilities.

View Article and Find Full Text PDF

We present a general expression for the maximum ion energy observed in experiments with thin foils irradiated by high-intensity laser pulses. The analytical model is based on a radially confined surface charge set up by laser accelerated electrons on the target rear side. The only input parameters are the properties of the laser pulse and the target thickness.

View Article and Find Full Text PDF

We report on the first radioactive beam experiment performed at the recently commissioned REX-ISOLDE facility at CERN in conjunction with the highly efficient gamma spectrometer MINIBALL. Using 30Mg ions accelerated to an energy of 2.25 MeV/u together with a thin (nat)Ni target, Coulomb excitation of the first excited 2+ states of the projectile and target nuclei well below the Coulomb barrier was observed.

View Article and Find Full Text PDF

Fusion neutrons from a heavy water droplet target irradiated with laser pulses of 3 x 10(19) W/cm(2) and from a deuterated secondary target are observed by a time-of-flight (TOF) neutron spectrometer. The observed TOF spectrum can be explained by fusion of deuterium ions simultaneously originating from two different sources: ion acceleration in the laser focus by ponderomotively induced charge separation and target-normal sheath acceleration off the target rear surface. The experimental findings agree well with 3D particle-in-cell simulations.

View Article and Find Full Text PDF