Publications by authors named "Habibu Aliyu"

Enset fiber is a promising feedstock for biofuel production with the potential to reduce carbon emissions and improve the sustainability of the energy system. This study aimed to maximize hydrogen and butanol production from Enset fiber through simultaneous saccharification and fermentation (SSF) process in bottles as well as in bioreactor. The SSF process in bottles resulted in a higher butanol concentration of 11.

View Article and Find Full Text PDF

Hydrocarbon and heavy metal pollution are amongst the most severe and prevalent environmental problems due to their toxicity and persistence. Bioremediation using microorganisms is considered one of the most effective ways to treat polluted sites. In the present study, we unveil the bioremediation potential of Brucella pituitosa strain BU72.

View Article and Find Full Text PDF

Background: The facultatively anaerobic thermophile Parageobacillus thermoglucosidasius is able to produce hydrogen gas (H) through the water-gas shift (WGS) reaction. To date this process has been evaluated under controlled conditions, with gas feedstocks comprising carbon monoxide and variable proportions of air, nitrogen and hydrogen. Ultimately, an economically viable hydrogenogenic system would make use of industrial waste/synthesis gases that contain high levels of carbon monoxide, but which may also contain contaminants such as H, oxygen (O) and other impurities, which may be toxic to P.

View Article and Find Full Text PDF

For a long time, the genus has been known and considered among the most applicable genera in several fields. Recent taxonomical developments resulted in the identification of more species in -related genera, particularly in the order (earlier heterotypic synonym: ), with potential application for biotechnological and industrial purposes such as biofuels, bioactive agents, biopolymers, and enzymes. Therefore, a thorough understanding of the taxonomy, growth requirements and physiology, genomics, and metabolic pathways in the highly diverse bacterial order, , will facilitate a more robust designing and sustainable production of strain lines relevant to a circular economy.

View Article and Find Full Text PDF

Background: Anaerobic fungi of the phylum Neocallimastigomycota have a high biotechnological potential due to their robust lignocellulose degrading capabilities and the production of several valuable metabolites like hydrogen, acetate, formate, lactate, and ethanol. The metabolism of these fungi, however, remains poorly understood due to limitations of the current cultivation strategies in still-standing bottles, thereby restricting the comprehensive evaluation of cultivation conditions.

Results: We describe the analysis of growth conditions and their influence on the metabolism of the previously isolated fungus Neocallimastix cameroonii G341.

View Article and Find Full Text PDF

Due to its acetate content, the pyrolytic aqueous condensate (PAC) formed during the fast pyrolysis of wheat straw could provide an inexpensive substrate for microbial fermentation. However, PAC also contains several inhibitors that make its detoxification inevitable. In our study, we examined the transcriptional response of Aspergillus oryzae to cultivation on 20% detoxified PAC, pure acetate and glucose using RNA-seq analysis.

View Article and Find Full Text PDF

After major mass extinction events, ancient plants and terrestrial vertebrates were faced with various challenges, especially ultraviolet (UV) light. These stresses probably resulted in changes in the biosynthetic pathways, which employed the MIO (3,5-dihydro-5-methylidene-4H-imidazole-4-one)-dependent enzymes (ammonia-lyase and aminomutase), leading to enhanced accumulation of metabolites for defense against UV radiation, pathogens, and microorganisms. Up to now, the origin and evolution of genes from this superfamily have not been extensively studied.

View Article and Find Full Text PDF

The thermophilic bacterium has recently gained interest due to its ability to catalyze the water gas shift reaction, where the oxidation of carbon monoxide (CO) is linked to the evolution of hydrogen (H) gas. This phenotype is largely predictable based on the presence of a genomic region coding for a carbon monoxide dehydrogenase (CODH-Coo) and hydrogen evolving hydrogenase (Phc). In this work, seven previously uncharacterized strains were cultivated under 50% CO and 50% air atmosphere.

View Article and Find Full Text PDF

Unlike conventional yeasts, several oleaginous yeasts, including DSM 27192, possess the innate ability to grow and produce biochemicals from plant-derived lignocellulosic components such as hexose and pentose sugars. To elucidate the genetic basis of growth and lipid production on glucose and xylose, we performed comparative temporal transcriptome analysis using RNA-seq method. Approximately 3.

View Article and Find Full Text PDF

Anaerobic fungi are prime candidates for the conversion of agricultural waste products to biofuels. Despite the increasing interest in these organisms, their growth requirements and metabolism remain largely unknown. The isolation of five strains of anaerobic fungi and their identification as , , , , and , is described.

View Article and Find Full Text PDF

Degradation of lignocellulosic materials to release fermentable mono- and disaccharides is a decisive step toward a sustainable bio-based economy, thereby increasing the demand of robust and highly active lignocellulolytic enzymes. Anaerobic fungi of the phylum are potent biomass degraders harboring a huge variety of such enzymes. Compared to cellulose, hemicellulose degradation has received much less attention; therefore, the focus of this study has been the enzymatic xylan degradation of anaerobic fungi as these organisms produce some of the most effective known hydrolytic enzymes.

View Article and Find Full Text PDF

is known to catalyse the biological water gas shift (WGS) reaction, a pathway that serves as a source of alternative energy and carbon to a wide variety of bacteria. Despite increasing interest in this bacterium due to its ability to produce biological hydrogen through carbon monoxide (CO) oxidation, there are no data on the effect of toxic CO gas on its physiology. Due to its general requirement of O, the organism is often grown aerobically to generate biomass.

View Article and Find Full Text PDF

Bioremediation offers a viable alternative for the reduction of contaminants from the environment, particularly petroleum and its recalcitrant derivatives. In this study, the ability of a strain of Pseudomonas BUN14 to degrade crude oil, pristane and dioxin compounds, and to produce biosurfactants, was investigated. BUN14 is a halotolerant strain isolated from polluted sediment recovered from the refinery harbor on the Bizerte coast, north Tunisia and capable of producing surfactants.

View Article and Find Full Text PDF

We report on the isolation of the previously-uncultured SK4 lineage, by two independent research groups, from a wild aoudad sheep rumen sample (Texas, USA) and an alpaca fecal sample (Baden-Württemberg, Germany). Isolates from both locations showed near-identical morphological and microscopic features, forming medium-sized (2-5 mm) white filamentous colonies with a white center of sporangia, on agar roll tubes and a heavy biofilm in liquid media. Microscopic analysis revealed monocentric thalli, and spherical polyflagellated zoospores with 7-20 flagella.

View Article and Find Full Text PDF

is a metabolically versatile, facultatively anaerobic thermophile belonging to the family . Previous studies have shown that this bacterium harbours co-localised genes coding for a carbon monoxide (CO) dehydrogenase (CODH) and Ni-Fe hydrogenase (Phc) complex and oxidises CO and produces hydrogen (H) gas via the water-gas shift (WGS) reaction. To elucidate the genetic events culminating in the WGS reaction, DSM 6285 was cultivated under an initial gas atmosphere of 50% CO and 50% air and total RNA was extracted at ~8 (aerobic phase), 20 (anaerobic phase), 27 and 44 (early and late hydrogenogenic phases) hours post inoculation.

View Article and Find Full Text PDF

Basidiomycetes populate a wide range of ecological niches but unlike ascomycetes, their capabilities to decay plant polymers and their potential for biotechnological approaches receive less attention. Particularly, identification and isolation of CAZymes is of biotechnological relevance and has the potential to improve the cache of currently available commercial enzyme cocktails toward enhanced plant biomass utilization. The order Tremellales comprises phylogenetically diverse fungi living as human pathogens, mycoparasites, saprophytes or associated with insects.

View Article and Find Full Text PDF

Trichosporonaceae incorporates six genera of physiologically and ecologically diverse fungi including both human pathogenic taxa as well as yeasts of biotechnological interest, especially those oleagenic taxa that accumulate large amounts of single cell oils (SCOs). Here, we have undertaken comparative genomic analysis of thirty-three members of the family with a view to gain insight into the molecular determinants underlying their lifestyles and niche specializations. Phylogenomic analysis revealed potential misidentification of three strains which could impact subsequent analyses.

View Article and Find Full Text PDF

Hydrogen gas represents a promising alternative energy source to dwindling fossil fuel reserves, as it carries the highest energy per unit mass and its combustion results in the release of water vapour as only byproduct. The facultatively anaerobic thermophile Parageobacillus thermoglucosidasius is able to produce hydrogen via the water-gas shift reaction catalyzed by a carbon monoxide dehydrogenase-hydrogenase enzyme complex. Here we have evaluated the effects of several operating parameters on hydrogen production, including different growth temperatures, pre-culture ages and inoculum sizes, as well as different pHs and concentrations of nickel and iron in the fermentation medium.

View Article and Find Full Text PDF

Environmental contamination with hydrocarbons though natural and anthropogenic activities is a serious threat to biodiversity and human health. Microbial bioremediation is considered as the effective means of treating such contamination. This study describes a biosurfactant producing bacterium capable of utilizing crude oil and various hydrocarbons as the sole carbon source.

View Article and Find Full Text PDF

We report here the draft genome of Saitozyma podzolica DSM 27192 sequenced based on PacBio chemistry. This yeast isolate produces large amounts of single-cell oil (SCO) and gluconic acid (GA). Information from the genome sequence will provide additional insight into the genetic mechanism of SCO and GA metabolism in this organism.

View Article and Find Full Text PDF

Here, we present the draft genome sequence of DSM 27194 generated on PacBio platform. Characterization of this oleaginous yeast originally collected from the grassland in Karlsruhe Germany, revealed potential for its utilization as a source of single cell oil (SCO) and gluconic acid (GA). The availability of the genome sequence provides a valuable resource for the elucidation of the genetic processes determining SCO and GA biosynthesis.

View Article and Find Full Text PDF

Background: The facultatively anaerobic thermophile Parageobacillus thermoglucosidasius produces hydrogen gas (H) by coupling CO oxidation to proton reduction in the water-gas shift (WGS) reaction via a carbon monoxide dehydrogenase-hydrogenase enzyme complex. Although little is known about the hydrogenogenic capacities of different strains of this species, these organisms offer a potentially viable process for the synthesis of this alternative energy source.

Results: The WGS-catalyzed H production capacities of four distinct P.

View Article and Find Full Text PDF

Bacterial classification at higher taxonomic ranks such as the order and family levels is currently reliant on phylogenetic analysis of 16S rRNA and the presence of shared phenotypic characteristics. However, these may not be reflective of the true genotypic and phenotypic relationships of taxa. This is evident in the order Bacillales, members of which are defined as aerobic, spore-forming and rod-shaped bacteria.

View Article and Find Full Text PDF

Background: Geobacillus and Parageobacillus are two ecologically diverse thermophilic genera within the phylum Firmicutes. These taxa have long been of biotechnological interest due to their ability to secrete thermostable enzymes and other biomolecules that have direct applications in various industrial and clinical fields. Despite the commercial and industrial interest in these microorganisms, the full scope of the secreted protein, i.

View Article and Find Full Text PDF