Publications by authors named "Habibollah Ghazvini"

Nitrogen (N) is an essential element for plant growth, and its deficiency influences plants at several physiological and gene expression levels. Barley (Hordeum vulgare) is one of the most important food grains from the Poaceae family and one of the most important staple food crops. However, the seed yield is limited by a number of stresses, the most important of which is the insufficient use of N.

View Article and Find Full Text PDF

Background: Nitrogen is one of the most important mineral nutrients for plants and is absorbed by the root system mainly in the inorganic form (NH and NO). Plants absorb nitrogen as a food source for growth, biomass production, and development. Nitrogen is mainly absorbed as nitrate, which is the most common source of nitrogen available to higher plants.

View Article and Find Full Text PDF

The interaction between genotypes and environments plays an important role in selecting superior genotypes for target locations. The main objectives of the present study were to analyze the effect of the genotype-by-environment interaction (GEI) and identify superior, newly developed, and promising barley genotypes for cold regions in Iran. For these purposes, a set of genotypes obtained from breeding programs for cold climates in Iran, along with two reference genotypes, were investigated at eight research stations (Tabriz, Ardabil, Arak, Miandoab, Mashhad, Jolge Rokh, Karaj, and Hamadan) during two consecutive growing seasons (2019-2020 and 2020-2021).

View Article and Find Full Text PDF

Requirement of vernalization is an important factor which plays a crucial role in cereals to transit from vegetative to reproductive phase. There are three types of growth habit in barley: winter, spring and facultative types; in which spring type does not require vernalization but winter and facultative genotypes require full and partial vernalization, respectively. Combination of two loci, Vrn-h1 and Vrn-h2, regulates vernalization in barley genotypes.

View Article and Find Full Text PDF

An important aspect of studying putative new genes in wheat is determining their position on the wheat genetic map. The primary difficulty in mapping genes is determining which chromosome carries the gene of interest. Several approaches have been developed to address this problem, each with advantages and disadvantages.

View Article and Find Full Text PDF