Am J Physiol Endocrinol Metab
January 2012
It was reported previously that isolated human islets from individuals with type 2 diabetes mellitus (T2DM) show reduced glucose-stimulated insulin release. To assess the possibility that impaired bioenergetics may contribute to this defect, glucose-stimulated respiration (Vo(2)), glucose usage and oxidation, intracellular Ca(2+), and insulin secretion (IS) were measured in pancreatic islets isolated from three healthy and three type 2 diabetic organ donors. Isolated mouse and rat islets were studied for comparison.
View Article and Find Full Text PDFPancreatic beta cells are hyper-responsive to amino acids but have decreased glucose sensitivity after deletion of the sulfonylurea receptor 1 (SUR1) both in man and mouse. It was hypothesized that these defects are the consequence of impaired integration of amino acid, glucose, and energy metabolism in beta cells. We used gas chromatography-mass spectrometry methodology to study intermediary metabolism of SUR1 knock-out (SUR1(-/-)) and control mouse islets with d-[U-(13)C]glucose as substrate and related the results to insulin secretion.
View Article and Find Full Text PDFGlutamate dehydrogenase (GDH) plays an important role in insulin secretion as evidenced in children by gain of function mutations of this enzyme that cause a hyperinsulinism-hyperammonemia syndrome (GDH-HI) and sensitize beta-cells to leucine stimulation. GDH transgenic mice were generated to express the human GDH-HI H454Y mutation and human wild-type GDH in islets driven by the rat insulin promoter. H454Y transgene expression was confirmed by increased GDH enzyme activity in islets and decreased sensitivity to GTP inhibition.
View Article and Find Full Text PDFInsulin secretion by pancreatic beta-cells is stimulated by glucose, amino acids, and other metabolic fuels. Glutamate dehydrogenase (GDH) has been shown to play a regulatory role in this process. The importance of GDH was underscored by features of hyperinsulinemia/hyperammonemia syndrome, where a dominant mutation causes the loss of inhibition by GTP and ATP.
View Article and Find Full Text PDFInhibition of ATP-sensitive K+ (K(ATP)) channels by an increase in the ATP/ADP ratio and the resultant membrane depolarization are considered essential in the process leading to insulin release (IR) from pancreatic beta-cells stimulated by glucose. It is therefore surprising that mice lacking the sulfonylurea type 1 receptor (SUR1-/-) in beta-cells remain euglycemic even though the knockout is expected to cause hypoglycemia. To complicate matters, isolated islets of SUR1-/- mice secrete little insulin in response to high glucose, which extrapolates to hyperglycemia in the intact animal.
View Article and Find Full Text PDFCulturing rat islets in high glucose (HG) increased 1-(14)C-alpha-ketoisocaproate (KIC) oxidation compared with culturing them in low glucose. Leucine caused insulin secretion (IS) in low glucose but not in HG rat islets, whereas KIC did so in both. Pretreatment with HG for 40 min abolished leucine stimulation of IS by mouse islets and prevented the cytosolic Ca(2+) rise without inhibiting IS and Ca(2+) increments caused by KIC.
View Article and Find Full Text PDFGlutamate dehydrogenase (GDH) is regulated by both positive (leucine and ADP) and negative (GTP and ATP) allosteric factors. We hypothesized that the phosphate potential of beta-cells regulates the sensitivity of leucine stimulation. These predictions were tested by measuring leucine-stimulated insulin secretion in perifused rat islets following glucose depletion and by tracing the nitrogen flux of [2-(15)N]glutamine using stable isotope techniques.
View Article and Find Full Text PDF