Publications by authors named "Habiba Drias"

The Artificial Orca Algorithm (AOA) is an existing swarm intelligence algorithm, empowered in this paper by two well-known mutation operators and opposition-based learning, yielding the novel methods Deep Self-Learning Artificial Orca Algorithm (DSLAOA), Opposition Deep Self-Learning Artificial Orca Algorithm (ODSLAOA), and Opposition Artificial Orca Learning Algorithm. The DSLAOA and ODSLAOA are based on the Cauchy and Gauss mutation operators. Their effectiveness is evaluated on both continuous and discrete problems.

View Article and Find Full Text PDF

The outbreak of the COVID-19 epidemic has had a significant impact in increasing the number of emergency calls, which causes significant problems to emergency medical services centers (EMS) in many countries around the world, such as Saudi Arabia, which attracts a huge number of pilgrims during pilgrimage seasons. Among these issues, we address real-time ambulance dispatching and relocation problems (real-time ADRP). This paper proposes an improved MOEA/D algorithm using Simulated Annealing (G-MOEA/D-SA) to handle the real-time ADRP issue.

View Article and Find Full Text PDF

In this paper, the quantum technology is exploited to empower the OPTICS unsupervised learning algorithm, which is a density-based clustering algorithm with numerous applications in the real world. We design an algorithm called Quantum Ordering Points To Identify the Clustering Structure (QOPTICS) and demonstrate that its computational complexity outperforms that of its classical counterpart. On the other hand, we propose a Deep self-learning approach for modeling the improvement of two Swarm Intelligence Algorithms, namely Artificial Orca Algorithm (AOA) and Elephant Herding Optimization (EHO) in order to improve their effectiveness.

View Article and Find Full Text PDF

With the increasing amount of medical data available on the Web, looking for health information has become one of the most widely searched topics on the Internet. Patients and people of several backgrounds are now using Web search engines to acquire medical information, including information about a specific disease, medical treatment or professional advice. Nonetheless, due to a lack of medical knowledge, many laypeople have difficulties in forming appropriate queries to articulate their inquiries, which deem their search queries to be imprecise due the use of unclear keywords.

View Article and Find Full Text PDF

The difficulty of disambiguating the sense of the incomplete and imprecise keywords that are extensively used in the search queries has caused the failure of search systems to retrieve the desired information. One of the most powerful and promising method to overcome this shortcoming and improve the performance of search engines is Query Expansion, whereby the user's original query is augmented by new keywords that best characterize the user's information needs and produce more useful query. In this paper, a new Firefly Algorithm-based approach is proposed to enhance the retrieval effectiveness of query expansion while maintaining low computational complexity.

View Article and Find Full Text PDF