Plant Physiol Biochem
February 2023
SHINE (SHN) clade transcription factors (TFs) represents a subfamily of APETALA2/ethylene-responsive factor (AP2/ERF) proteins. The latter, is characterized by its responsiveness to the phytohormone ethylene and the presence of AP2 DNA-binding domain. They are involved in many biological processes and in responses to different environmental constraints.
View Article and Find Full Text PDFThe APETAL2/Ethylene Responsive Factor (AP2/ERF) family was the subject of intensive research which led to the identification of several members involved in different stress responses such as salinity, drought and high temperature. The SHN/WIN clade of AP2/ERF participates in many important processes such as cutin and wax biosynthesis, ethylene signaling and gene expression. Here, we report the functional analysis of SHN1-type transcription factor, HvSHN1, from barely.
View Article and Find Full Text PDFPhysiol Plant
September 2021
Soil and water are among the most valuable resources on earth. Unfortunately, their contamination with heavy metals has become a global problem. Heavy metals are not biodegradable and cannot be chemically degraded; therefore, they tend to accumulate in soils or to be transported by streaming water and contaminate both surface and groundwater.
View Article and Find Full Text PDFCadmium (Cd), copper (Cu), and zinc (Zn) are among the most common heavy metals (HMs) present in polluted soils. While some HMs are required for key biological processes, they are toxic when present in excess. This toxicity damages plant health, decreases crop yields, and can impact human health via the food chain.
View Article and Find Full Text PDFOne of the most important strategies evolved by plants to tolerate heavy metals (HMs) is their sequestration into the vacuole. Recent studies have demonstrated that Cu sequestration into vacuole is dependent on the electrochemical gradient generated by vacuolar proton pumps: the V-H-PPase and the V-H-ATPase. In a previous study, we demonstrated that co-expression of V-H-PPase and a sodium/proton antiporter genes, isolated from wheat, in transgenic tobacco plants significantly increases both H pumping activity of the endogenous V-H-ATPase and V-H-PPase compared to wild-type (WT) plants, all grown in the absence of stress.
View Article and Find Full Text PDFRecent years have witnessed a renewed interest in introns as a tool to increase gene expression. We previously isolated TdSHN1 gene encoding a transcription factor in durum wheat. Here we show that TdSHN1 intron contains many CT-stretches and the motif CGATT known to be important for IME.
View Article and Find Full Text PDFPlants are sessile organisms, hence to face environmental constrains they developed strategies that rely on the activation of stress-response genes under the control of specific transcription factors. The plant hormone ethylene mediates physiological, developmental and stress responses through the activation of Ethylene Response Factors (ERFs) which belong to a large multigene family of transcription factors. While an increasing number of studies supports the involvement of ERFs in abiotic stress responses, so far the specific role of ERF family members in different abiotic stress conditions remains unexplored.
View Article and Find Full Text PDFBarley (Hordeum vulgare L.) is the fourth major cereal crop and shows high adaptive capabilities to diverse environments. Thus, it might represent a potential reservoir of novel genes to improve abiotic stress tolerance.
View Article and Find Full Text PDFPotassium (K) deficiency is a worldwide problem. Thus, the K biofortification of crops is needed to enhance human nutrition. Tomato represents an ideal candidate for such biofortification programs thanks to its widespread distribution and its easy growth on a commercial scale.
View Article and Find Full Text PDFOver the last decade, APETALA2/Ethylene Responsive Factor (AP2/ERF) proteins have become the subject of intensive research activity due to their involvement in a variety of biological processes. This research led to the identification of AP2/ERF genes in many species; however, little is known about these genes in durum wheat, one of the most important cereal crops in the world. In this study, a new member of the AP2/ERF transcription factor family, designated TdSHN1, was isolated from durum wheat using thermal asymetric interlaced PCR (TAIL-PCR) method.
View Article and Find Full Text PDFThe SOS signaling pathway has emerged as a key mechanism in preserving the homeostasis of Na⁺ and K⁺ under saline conditions. We have recently identified and functionally characterized, by complementation studies in yeast, the gene encoding the durum wheat plasma membrane Na⁺/H⁺ antiporter (TdSOS1). To extend these functional studies to the whole plant level, we complemented Arabidopsis sos1-1 mutant with wild-type TdSOS1 or with the hyperactive form TdSOS1∆972 and compared them to the Arabidopsis AtSOS1 protein.
View Article and Find Full Text PDFPhosphogypsum (PG) is a by-product of the phosphorus-fertiliser industry and represents an environmental concern since it contains pollutants such as cadmium (Cd). We have recently shown that the overexpression of a proton pump gene (TaVP1) in transgenic tobacco (Nicotiana tabacum) led to an enhanced Cd tolerance and accumulation. The aim of this study was to evaluate the potential of transgenic Arabidopsis thaliana plants harbouring the TaVP1 gene to phytoremediate phosphogypsum.
View Article and Find Full Text PDFAbiotic stress tolerance of plants is a very complex trait and involves multiple physiological and biochemical processes. Thus, the improvement of plant stress tolerance should involve pyramiding of multiple genes. In the present study, we report the construction and application of a bicistronic system, involving the internal ribosome entry site (IRES) sequence from the 5'UTR of the heat-shock protein of tobacco gene NtHSF-1, to the improvement of salt tolerance in transgenic tobacco plants.
View Article and Find Full Text PDFCadmium (Cd) is considered an extremely significant pollutant due to its high toxicity to many organisms. Plants have evolved several mechanisms to cope with Cd, the most important of which is vacuolar sequestration. Cadmium can be directly transported into vacuoles by cations/H(+) exchangers, such as CAXs, which are energized by the pH gradient established by proton pumps.
View Article and Find Full Text PDFLate Embryogenesis Abundant (LEA) proteins are associated with tolerance to water-related stress. A wheat (Triticum durum) group 2 LEA proteins, known also as dehydrin (DHN-5), has been previously shown to be induced by salt and abscisic acid (ABA). In this report, we analyze the effect of ectopic expression of Dhn-5 cDNA in Arabidopsis thaliana plants and their response to salt and osmotic stress.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2005
We previously reported on a de novo designed protein "milk bundle-1Trp" (MB-1Trp) as a source of selected essential amino acids (EAA) for ruminant feeding. Here, we attempt to express this de novo designed protein in alfalfa. The microbial version of the gene encoding the protein was modified in order to achieve two expression strategies in transgenic alfalfa plants.
View Article and Find Full Text PDF