Background: Prostate-specific antigen (PSA), a member of the kallikrein family of serine proteases, is a chymotrypsin-like glycoprotein produced by the prostate epithelium. Elevated serum PSA (> 4 ng/ml) is a tumor marker for prostatic cancer and benign prostatic hypertrophy; increasing serum PSA over time is indicative of metastatic disease. It has been suggested that PSA may contribute to tumor metastasis through degradation of extracellular matrix glycoproteins, as well as cleavage of IGF binding protein-3, a modulator of IGF-1.
View Article and Find Full Text PDFThe pyrrolopyrimidine-based antifolate, N-¿4-[2-(2-amino-3,4-dihydro-4-oxo-7H-pyrrolo[2,3-d]pyrimidin-5-yl)ethyl ]benzoyl¿glutamic acid, LY231514 (MTA) has demonstrated antitumor activity in a broad array of human tumors, including breast cancer, colon cancer, non-small cell lung cancer, head and neck cancer, pancreatic cancer, and other solid tumors. The biochemical basis of this activity was explored by measuring activation of MTA by polyglutamation and the activity of MTA to inhibit several folate-dependent enzymes: thymidylate synthase, dihydrofolate reductase, and glycinamide ribonucleotide formyltransferase (GARFT). The enzyme folylpolyglutamate synthase (FPGS) activated MTA very efficiently.
View Article and Find Full Text PDFA new series of 2,4-diaminopyrido[2,3-d]pyrimidine based antifolates 1-3 were synthesized through an efficient conversion of 2-pivaloyl-4-oxo-6-ethynylpyrido[2,3-d]pyrimidine 5 to the corresponding 4-amino analog 7 via the activated 1,2,4-triazole intermediate 6. Compound 7 was used as the key intermediate for the preparation of the final products. The detailed biological evaluation of these compounds both as antineoplastic and antiarthritic agents will be discussed.
View Article and Find Full Text PDF5,6,7,8-Tetrahydro-N5,N10-carbonylfolic acid (LY354899) has been demonstrated to inhibit the dehydrogenase activity of C1-tetrahydrofolate synthase. This compound was only moderately antiproliferative toward CCRF-CEM lymphocytic leukemia cells in culture, but induced apoptosis after long incubation times. Slightly greater potency was observed in CEM cells adapted to grow in low folate media.
View Article and Find Full Text PDFExtensive biochemical and pharmacological evidence indicates that LY231514 is a novel antifolate antimetabolite. LY231514 is transported into cells mainly through the reduced folate carrier system and extensively metabolized to polyglutamated forms. The polyglutamates of LY231514 inhibit at least three key folate enzymes: TS, DHFR, and GARFT, and to a lesser extent AICARFT and C1-tetrahydrofolate synthase.
View Article and Find Full Text PDFPurpose: The whole-body autoradiographic distribution of two radiolabeled antifolate inhibitors of GAR formyltransferase, lometrexol and LY309887, were compared in tumor-bearing mice maintained on standard diet (SD) and a low-folate diet (LFD) in order to determine the total amounts of drug that accumulated in blood, tumor, liver and kidney. The time-dependent changes in tissue distribution were evaluated over a 7-day period in order to compare the pharmacokinetic properties of both inhibitors and to assess the influence of dietary folate on this distribution. In addition, the effect of dietary folate on polyglutamation of compound accumulating in the liver was measured.
View Article and Find Full Text PDFN-[4-[2-(2-amino-3,4-dihydro-4-oxo-7H-pyrrolo[2,3-d]pyrimidin-5-yl)ethyl ]-benzoyl]-L-glutamic acid (LY231514) is a novel pyrrolo[2,3-d]pyrimidine-based antifolate currently undergoing extensive Phase II clinical trials. Previous studies have established that LY231514 and its synthetic gamma-polyglutamates (glu3 and glu5) exert potent inhibition against thymidylate synthase (TS). We now report that LY231514 and its polyglutamates also markedly inhibit other key folate-requiring enzymes, including dihydrofolate reductase (DHFR) and glycinamide ribonucleotide formyltransferase (GARFT).
View Article and Find Full Text PDFMembrane-associated folate receptors (FRs) have been detected in many mammalian species, and multiple isoforms have been identified. The pharmacological properties of FRs from murine kidney, liver, and six murine tumors were characterized. Murine kidney expressed primarily folate-binding protein 1, analogous to human FR-alpha, whereas murine liver expressed predominantly folate-binding protein 2, analogous to human FR-beta.
View Article and Find Full Text PDFWe have studied the molecular effects of a LFD in a murine model in order to better define the biochemical changes associated with folate deficiency. In addition, we have demonstrated the effect of a LFD on the pharmacokinetic profile and therapeutic activity and toxicity of lometrexol. These studies showed increased density of FR in tumors implanted in LFD mice and a decrease in the affinity of these receptors for folic acid.
View Article and Find Full Text PDFThe metabolism of 5,10-dideazatetrahydrofolate (DDATHF [lometrexol]) to polyglutamate derivatives by folylpoly-gamma-glutamate synthetase (FPGS) plays a central role in the activity of this compound as an antineoplastic agent. The availability of a series of DDATHF derivatives differing in structure throughout the molecule has allowed a study of the structural requirements for substrate activity with mouse liver and hog liver FPGS. Kinetics of the polyglutamation reaction in vitro have been related to the potency of these compounds as inhibitors of the growth of human CEM leukemic cells.
View Article and Find Full Text PDFTight-binding inhibition of recombinant human monofunctional glycinamide ribonucleotide formyltransferase by Lometrexol (6R-5,10-dideazatetrahydrofolate) requires polyglutamation. LY254155 and LY222306 differ from 5,10-dideazatetrahydrofolate in the replacement of the 1',4'- phenylene moiety by a 2',5'-thiophene and a 2',5'-furan, respectively. Compared to Lometrexol, the thiophene and furan analogues had 25- and 75-fold greater inhibitory potencies against human monofunctional glycinamides ribonucleotide formyltransferase (Ki = 2.
View Article and Find Full Text PDFPrevious work has shown that the octopine synthase (ocs) gene encoded by the Agrobacterium tumefaciens Ti-plasmid contains an upstream activating sequence necessary for its expression in plant cells. This sequence is composed of an essential 16-bp palindrome and flanking sequences that modulate the level of expression of the ocs promoter in transgenic tobacco calli. In this study, we have used RNA gel blot analysis of RNA extracted from transgenic tobacco plants to show that the octopine synthase gene is not constitutively expressed in all plant tissues and organs.
View Article and Find Full Text PDFMutation of the genes virA, virB, virC, and virG of the Agrobacterium tumefaciens octopine-type Ti plasmid pTiR10 was found to cause a 100- to 10,000-fold decrease in the frequency of conjugal transfer of this plasmid between Agrobacterium cells. This effect was not absolute, however, in that it occurred only during early times (18 to 24 h) of induction of the conjugal transfer apparatus by octopine. Induction of these mutant Agrobacterium strains by octopine for longer periods (48 to 72 h) resulted in a normal conjugal transfer frequency.
View Article and Find Full Text PDF