Vigilance is a continuously altering state of cortical activation that influences cognition and behavior and is disrupted in multiple brain pathologies. Neuromodulatory nuclei in the brainstem and basal forebrain are implicated in arousal regulation and are key drivers of widespread neuronal activity and communication. However, it is unclear how their large-scale brain network architecture changes across dynamic variations in vigilance state (i.
View Article and Find Full Text PDFCognitive, behavioral, and disease traits are influenced by both genetic and environmental factors. Individual differences in these traits have been associated with graph theoretical properties of resting-state networks, indicating that variations in connectome topology may be driven by genetics. In this study, we establish the heritability of global and local graph properties of resting-state networks derived from functional MRI (fMRI) and magnetoencephalography (MEG) using a large sample of twins and non-twin siblings from the Human Connectome Project.
View Article and Find Full Text PDFIntroduction: The single equivalent current dipole (sECD) is the standard clinical procedure for presurgical language mapping in epilepsy using magnetoencephalography (MEG). However, the sECD approach has not been widely used in clinical assessments, mainly because it requires subjective judgements in selecting several critical parameters. To address this limitation, we developed an automatic sECD algorithm (AsECDa) for language mapping.
View Article and Find Full Text PDFFocal epilepsy originates within networks in one hemisphere. However, previous studies have investigated network topologies for the entire brain. In this study, magnetoencephalography (MEG) was used to investigate functional intra-hemispheric networks of healthy controls (HCs) and patients with left- or right-hemispheric temporal lobe or temporal plus extra-temporal lobe epilepsy.
View Article and Find Full Text PDFThere is an unmet need to develop robust predictive algorithms to preoperatively identify pediatric epilepsy patients who will respond to vagus nerve stimulation (VNS). Given the similarity in the neural circuitry between vagus and median nerve afferent projections to the primary somatosensory cortex, the current study hypothesized that median nerve somatosensory evoked field(s) (SEFs) could be used to predict seizure response to VNS. Retrospective data from forty-eight pediatric patients who underwent VNS at two different institutions were used in this study.
View Article and Find Full Text PDF