Publications by authors named "Haarlammert N"

Laser cooling of a 5 cm long, 1 mm diameter ytterbium doped (6.56×10 ions/m) silica rod by 67 K from room temperature was achieved. For the pump source, a 100 W level ytterbium fiber amplifier was constructed along with a 1032 nm fiber Bragg grating seed laser.

View Article and Find Full Text PDF

In this work we have developed a high-speed Stokes polarimeter method based on simultaneous 4-channel imaging with a high-speed camera. Thus, current speed limitations of imaging polarimeters for wavelengths around 1 µm can be overcome, allowing a sub-ms polarization-resolved characterization of transverse mode instability (TMI). Additionally, the Stokes parameters of each individual mode are calculated by a simultaneous 4-beam mode reconstruction algorithm during post-processing and can be analyzed with unprecedented temporal resolution.

View Article and Find Full Text PDF

The effect of transverse mode instability (TMI) poses a fundamental obstacle for a further scaling of diffraction-limited, high-power fiber laser systems. In this work we present a theoretical and experimental study on the mitigation of TMI by modal birefringence in a polarization maintaining (PM) fiber. With the help of comprehensive simulations, we show that the thermally-induced refractive index grating responsible for TMI can be modified and washed out when light is coupled with a polarization input angle detuned from the main axes of the fiber.

View Article and Find Full Text PDF

In this work, we conduct experimental investigations of transverse mode instabilities (TMI) in a large mode area ultra-low numerical aperture polarization maintaining fiber amplifier. This fiber is few mode in the slow-axis (conventional operation mode), but single mode in the fast-axis. We test the stability of the output beam by changing the input polarization angle and systematically investigate the transverse mode instability threshold in the two principal polarization axes.

View Article and Find Full Text PDF

From laser design to optical refrigeration, experimentally measured fluorescence spectra are often utilized to obtain input parameters for predictive models. However, in materials that exhibit site-selectivity, the fluorescence spectra depend on the excitation wavelength employed to take the measurement. This work explores different conclusions that predictive models reach after inputting such varied spectra.

View Article and Find Full Text PDF

Frequency doubling of a Q-switched Yb-doped rod-type 4 × 4 multicore fiber (MCF) laser system is reported. A second harmonic generation (SHG) efficiency of up to 52% was achieved with type I non-critically phase-matched lithium triborate (LBO), with a total SHG pulse energy of up to 17 mJ obtained at 1 kHz repetition rate. The dense parallel arrangement of amplifying cores into a shared pump cladding enables a significant increase in the energy capacity of active fibers.

View Article and Find Full Text PDF

We report on the optical refrigeration of ytterbium doped silica glass by >40 K starting at room temperature, which represents more than a two-fold improvement over the previous state-of-the-art. A spectroscopic investigation of the steady-state and time-dependent fluorescence was carried out over the temperature range 80 K to 400 K. The calculated minimum achievable temperature for our Yb doped silica sample is ≈150 K, implying the potential for utilizing ytterbium doped silica for solid-state optical refrigeration below temperatures commonly achieved by standard Peltier devices.

View Article and Find Full Text PDF

A detailed investigation into the wavelength-dependent cooling efficiencies of two ultra-pure large core diameter ytterbium-doped silica fibers is carried out by means of the laser-induced thermal modulation spectroscopy (LITMoS) method. From these measurements, an external quantum efficiency of 0.99 is obtained for both fibers.

View Article and Find Full Text PDF

High-energy Q-switched master oscillator power amplifier systems based on rod-type 4 × 4 multicore fibers are demonstrated, achieving energy up to 49 mJ in ns-class pulses. A tapered fiber geometry is tested that maintains low mode order in large multimode output cores, improving beam quality in comparison to a similar fiber with no taper. The tapered fiber design can be scaled both in the number of amplifying cores and in the dimensions of the cores themselves, providing a potential route toward joule-class fiber lasers systems.

View Article and Find Full Text PDF

We present a coherently combined femtosecond fiber chirped-pulse-amplification system based on a rod-type, ytterbium-doped, multicore fiber with 4 × 4 cores. A high average power of up to 500 W (after combination and compression) could be achieved at 10 MHz repetition rate with excellent beam quality. Additionally, < 500 fs pulses with up to 600 µJ of pulse energy were also realized with this setup.

View Article and Find Full Text PDF

An ytterbium doped silica optical fiber with a core diameter of 900µ has been cooled by 18.4 K below ambient temperature by pumping with 20 W of 1035 nm light in vacuum. In air, cooling by 3.

View Article and Find Full Text PDF

We present the inscription of narrow-linewidth fiber Bragg gratings (FBGs) into different types of multicore fibers (MCFs) using ultrashort laser pulses and the phase mask technique, which can act as notch filters. Such filters are required, e.g.

View Article and Find Full Text PDF

Laser cooling of a solid is achieved when a coherent laser illuminates the material, and the heat is extracted by annihilation of phonons resulting in anti-Stokes fluorescence. Over the past year, net solid-state laser cooling was successfully demonstrated for the first time in Yb-doped silica glass in both bulk samples and fibers. Here, we report more than 6 K of cooling below the ambient temperature, which is the lowest temperature achieved in solid-state laser cooling of silica glass to date to the best of our knowledge.

View Article and Find Full Text PDF

In this paper we present numerical and experimental results revealing that the mode instability threshold of highly Yb-doped, Ce/Al co-doped pedestal fibers is affected by the size of the index-increased pedestal structure surrounding the core. An alternative preparation technology for the realization of large mode area fibers with very large Al-doped silica pedestals is introduced. Three different pedestal fiber design iterations characterized by low photodarkening were manufactured and tested in counter-pumped amplifier setups.

View Article and Find Full Text PDF

We present the amplification of a narrow-bandwidth signal at a wavelength of 1018 nm to a power exceeding 600 W with a stable output polarization state. The beam showed an excellent, nearly diffraction-limited beam quality. The high-power output could be realized using an in-house designed and fabricated fiber with a core-cladding diameter ratio of 32/260, ultra-low NA of 0.

View Article and Find Full Text PDF

In this Letter, we present, to the best of our knowledge, the largest effective single-mode fiber reported to date. The employed waveguide is a passive large pitch fiber (LPF), which shows the core area scaling potential of such a fiber structure. In particular, we achieved stable single-transverse mode transmission at a wavelength of 1.

View Article and Find Full Text PDF

In this contribution we investigate the transversal mode instability behavior of a ytterbium-doped commercial 20/400 fiber and obtain 2.9 kW of output power after optimizing the influencing parameters. In this context, we evaluate the influence of the bend diameter and the pump wavelength within the scope of the absorption length and the length of the fiber.

View Article and Find Full Text PDF

We report on detailed in situ distributed temperature measurements inside a high power fiber amplifier. The deducted thermal load and the transversal mode instability (TMI) threshold of a commercial large mode area fiber with 25 μm core and 400 μm cladding were measured at various seed wavelengths. By matching these results with detailed simulations we show that photodarkening has a negligible impact on the thermal load and, therefore, on the TMI threshold in this fiber.

View Article and Find Full Text PDF

We investigate the average power scaling of two diode-pumped Yb-doped fiber amplifiers emitting a diffraction-limited beam. The first fiber under investigation with a core diameter of 30 µm was able to amplify a 10 W narrow linewidth seed laser up to 2.8 kW average output power before the onset of transverse mode instabilities (TMI).

View Article and Find Full Text PDF

We present modal content measurements (S) of two different negative curvature hollow-core photonic crystal fibers: a kagome fiber and an ice cream cone fiber. Their sensitivity towards mode matching, bending and polarization is analyzed. For the kagome fiber, a higher order mode suppression of 17dB under optimal conditions was achieved, and for the ice cream cone fiber there was a suppression of up to 42dB.

View Article and Find Full Text PDF

We report on a newly designed and fabricated ytterbium-doped large mode area fiber with an extremely low NA (~0.04) and related systematic investigations on fiber parameters that crucially influence the mode instability threshold. The fiber is used to demonstrate a narrow linewidth, continuous wave, single mode fiber laser amplifier emitting a maximum output power of 3 kW at a wavelength of 1070 nm without reaching the mode-instability threshold.

View Article and Find Full Text PDF

Systematic experimental investigations toward the mode instability (MI) threshold in low-NA fibers are performed. By testing several fibers with varying V-parameters drawn from the same preform, a high degree of reproducibility of the experimental conditions could be achieved. This allows for systematic investigations on isolated parameters influencing the complex behavior of MI.

View Article and Find Full Text PDF

State-of-the-art high power Yb-doped large mode area fibers have been developed to a performance level able to reach the so-called mode instability threshold. In this contribution we will discuss the experimental results regarding the temporal evolution (build up and decay) of this effect to come closer to a comprehensive understanding of its driving mechanisms. Our investigations prove that the relevant time scale for build up and decay of mode instability is in the millisecond range and thus deliver experimental evidence of underlying thermal effects.

View Article and Find Full Text PDF